prove or desprove that if An->1 then An+1/An ->1

Try something like this:

If An --> 1, then given e, exists N s.t. | An - 1 | < e for all n > N.

Now take:


|A(n+1)/A(n) - 1 |

= A(n+1) - A(n)
-------------
A(n)

Assume that | A(n) - 1 | < 1/2

Then A(n) > 1/2


A(n+1) - A(n)
| ------------- | < 2 | A(n + 1) - A(n) |
A(n)

Now choose N s.t.
| A(n+1) - 1| < e/4 and

| A(n) - 1| < e/4

Then |A(n+1) - A(n) | < e/2

and

A(n+1) - A(n)
| ------------- | < 2 | A(n + 1) - A(n) | < 2(e/2) = e
A(n)
 
Top