Try something like this:
If An --> 1, then given e, exists N s.t. | An - 1 | < e for all n > N.
Now take:
|A(n+1)/A(n) - 1 |
= A(n+1) - A(n)
-------------
A(n)
Assume that | A(n) - 1 | < 1/2
Then A(n) > 1/2
A(n+1) - A(n)
| ------------- | < 2 | A(n + 1) - A(n) |
A(n)
Now choose N s.t.
| A(n+1) - 1| < e/4 and
| A(n) - 1| < e/4
Then |A(n+1) - A(n) | < e/2
and
A(n+1) - A(n)
| ------------- | < 2 | A(n + 1) - A(n) | < 2(e/2) = e
A(n)