Prove every real positive a, b satisfy 1/sqrt[a^2+b] + 1/sqrt[a+b^2] < 1/a + 1/b

Jimmy44

New member
Joined
Feb 18, 2017
Messages
11
1. Proof that every couple of real and positive numbers (a, b) satisfy this inequality:

. . .\(\displaystyle \dfrac{1}{\sqrt{\strut a^2\, +\, b\,}}\, +\, \dfrac{1}{\sqrt{\strut a\, +\, b^2\,}}\, <\, \dfrac{1}{a}\, +\, \dfrac{1}{b}\)

I have spent a lot of time to solve this, but I couldn't proof this. Can you help me please?
 

Attachments

  • IMG_0003.jpg
    IMG_0003.jpg
    9.9 KB · Views: 3
Last edited by a moderator:
Ok, so let's get started :cool: Here are my conversions:

\(\displaystyle \frac{1}{\sqrt{a^ {2}+b}} + \frac{1}{\sqrt{a+b^ {2}} } < \frac{1}{a} + \frac{1}{b}\)

multiply both sides of inequality by \(\displaystyle \sqrt{(a+ b^{2} )(a ^{2}+b)}\)

\(\displaystyle \sqrt{a+b^{2}} + \sqrt{a^2+b}< \frac{\sqrt{(a+ b^{2} )(a ^{2}+b)}}{a} + \frac{\sqrt{(a+ b^{2} )(a ^{2}+b)}}{b}\)

multiply both sides by \(\displaystyle ab\)

\(\displaystyle ab(\sqrt{a+b^{2}} + \sqrt{a^2+b})<b\sqrt{(a+ b^{2} )(a ^{2}+b)}+ a\sqrt{(a+ b^{2} )(a ^{2}+b)}\)

\(\displaystyle ab(\sqrt{a+b^{2}} + \sqrt{a^2+b})< (a+b)(\sqrt{(a+ b^{2} )(a ^{2}+b)})\)

intensify both sides ^2

\(\displaystyle a^{2}b^{2}(a+b^{2}+ 2\sqrt{(a+ b^{2} )(a ^{2}+b)} +a^{2}+ b)\)

. . . . .\(\displaystyle <(a^{2}+ 2ab+b^{2})((a+ b^{2} )(a ^{2}+b))\)

\(\displaystyle a^{3}b^{2}+a^{2}b^{4}+2a^{2}b^{2}\sqrt{(a+ b^2)(a^{2}+b)}+a^{4}b^{2}+a^{2}b^{3}\)

. . . . .\(\displaystyle <(a^{2}+ 2ab+b^{2})(a^{3}+ab+a^{2}b^{2}+b^{3})\)

\(\displaystyle a^{3}b^{2}+a^{2}b^{4}+2a^{2}b^{2}\sqrt{(a+ b^2)(a^{2}+b)}+a^{4}b^{2}+a^{2}b^{3}\)

. . . . .\(\displaystyle <a^{5}+a^{3}b+a^{4}b^{2}+a^{2}b^{3}+2a^{4}b+2a^{2}b^{2}+2a^{3}b^{3}\)

. . . . . . . .\(\displaystyle +2ab^{4}+a^{3}b^{2}+ab^{3}+a^{2}b^{4}+b^{5}\)

\(\displaystyle 2a^{2}b^{2}\sqrt{(a+ b^2)(a^{2}+b)}\)

. . . . .\(\displaystyle <a^{5}+a^{3}b+2a^{4}b+2a^{2}b^{2}+2a^{3}b^{3}+2ab^{4}+ab^{3}+b^{5}\)

and what to do next? This is moment when I got stuck.
 
Last edited by a moderator:
Given \(\displaystyle a,b>0\in\mathbb{R}\), we may state:

\(\displaystyle a^2+b>a^2\)

Hence:

\(\displaystyle \sqrt{a^2+b}>a\)

And thus:

\(\displaystyle \displaystyle \frac{1}{\sqrt{a^2+b}}<\frac{1}{a}\tag{1}\)

Likewise:

\(\displaystyle \displaystyle \frac{1}{\sqrt{a+b^2}}<\frac{1}{b}\tag{2}\)

Adding (1) and (2), we obtain:

\(\displaystyle \displaystyle \frac{1}{\sqrt{a^2+b}}+\frac{1}{\sqrt{a+b^2}}< \frac{1}{a}+\frac{1}{b}\)
 
Top