Prove: C_{k - 3}^{k - 3} \cdot C_{n - k + 2}^2 + C_{k - 2}^{k - 3} \cdot C_{n - k + 1}^2 + C_{k - 1}^{k - 3} \cdot C_{n - k}^2 + \cdots + C_{n - 3}^{k - 3} \cdot C_2^2 = C_n^k