karliekay said:
Prove that 1+3+5+...+(2n-1)=n^2.
Dont know how to do it at all.
How about a proof by induction?
Is the given statement true when n = 1?
1 = 1[sup:2jy35jtt]2[/sup:2jy35jtt]
1 = 1
True
Assume that the given statement is true when n = k...that is, assume that
1 + 3 + 5 + 7 + ... + (2k - 1) = k[sup:2jy35jtt]2[/sup:2jy35jtt]
Will it be true for k + 1?
The term AFTER (2k - 1) would be (2k - 1) + 2, or (2k + 1). Let's add (2k + 1) to both sides of the equation:
1 + 3 + 5 + 7 + .... + (2k - 1) + (2k - 1 + 2) = k[sup:2jy35jtt]2[/sup:2jy35jtt] + (2k + 1)
1 + 3 + 5 + 7 + .....+ (2k - 1) + (2k + 1) = k[sup:2jy35jtt]2[/sup:2jy35jtt] + 2k + 1
but k[sup:2jy35jtt]2[/sup:2jy35jtt] + 2k + 1 is (k + 1)[sup:2jy35jtt]2[/sup:2jy35jtt]
1 + 3 + 5 + 7 + .....+ (2k - 1) + (2k + 1) = (k + 1)[sup:2jy35jtt]2[/sup:2jy35jtt]