Note: Grouping symbols will serve to clarify your meaning greatly. I think I know what you mean, but if I'm right, you don't mean what you typed. For instance, "1 + sinx/sinx" means "1 + 1" or "2", but I'm betting you mean "[1 + sin(x)] / sin(x)".
You have gotten this far:
. . . . .\(\displaystyle \large{\left(\frac{1}{\cos{(x)}}\,- \,\frac{\sin{(x)}}{\cos{(x)}}\right)\, \left(\frac{1}{\sin{(x)}}\,+\,1\right)\,=\,\frac{\cos{(x)}}{\sin{(x)}}}\)
. . . . .\(\displaystyle \large{\left(\frac{1\,-\,\sin{(x)}}{\cos{(x)}}\right)\; \left(\frac{1\,+\,\sin{(x)}}{\sin{(x)}}\right)\,= \,\frac{\cos{(x)}}{\sin{(x)}}}\)
Now multiply through the numerators on the left-hand side:
. . . . .\(\displaystyle \large{\frac{1\,-\,\sin^2{(x)}}{\cos{(x)}\sin{(x)}}\,= \,\frac{\cos{(x)}}{\sin{(x)}}}\)
Simplify that numerator, cancel, and see what you end up with.
Eliz.