Re: Proofs:HOW DO YOU DO PROOFS INVOLVING PERPENDICULAR BISE
Hello, sportychick9890!
Some friendly advice:
\(\displaystyle \;\;\)Take off the Shift Lock.
\(\displaystyle \;\;\)Click "Preview" befor you "Submit"
Given: \(\displaystyle \overline{MN}\,=\,\overline{MP}.\;\angle NMO\,=\,\angle PMO\)
Prove: \(\displaystyle \overline{MO}\) is the perpendicular bisector of \(\displaystyle \overline{NP}\).
Code:
N
*
/| \
/ | \
/ | \
M * - + - - - * O
\ |Q /
\ | /
\| /
*
P
\(\displaystyle 1.\;MN\,=\,MP\)
. . . . . . . . . . . . . . \(\displaystyle 1.\text{ Given}\)
\(\displaystyle 2.\;\angle NMO\,=\,\angle PMP\)
. . . , . . . \(\displaystyle 2.\text{ Given}\)
\(\displaystyle 3.\;NQ\,=\,NQ\)
. . . . . . . . . . . . . . . \(\displaystyle 3.\text{ Reflexive postulate}\)
\(\displaystyle 4.\;\Delta MON\text{ congr }\Delta MOP\)
. . . \(\displaystyle 4.\text{ s.a.s.}\)
Now we have: \(\displaystyle \,NQ\,=\,PQ\;\;\Rightarrow\;\;MO\text{ bisects }NP\)
and \(\displaystyle \,\angle MQN\,=\,\angle MQP\;\;\Rightarrow\;\;\angle MQN\,=\,90^o\;\;\Rightarrow\;\;MO\,\perp\,NP\)
I'll let
you supply the reasons . . .