prove that n/(n−2)+(n+1)/(n−1)=n2
so (n−2)!(n−(n−2))!n!+(n−1)!(n+1−(n−1))!(n+1)!
then (n−2)!(2!)n!+(n−1)!(2!)(n+1)!
(n−2)!(2)n!+((n−1)!n)(2)((n+1)n)!
(n−2)!(2)n!+(n!)(2)((n+1)n)!
I'm not sure where to go from here
thanks for any advice
so (n−2)!(n−(n−2))!n!+(n−1)!(n+1−(n−1))!(n+1)!
then (n−2)!(2!)n!+(n−1)!(2!)(n+1)!
(n−2)!(2)n!+((n−1)!n)(2)((n+1)n)!
(n−2)!(2)n!+(n!)(2)((n+1)n)!
I'm not sure where to go from here
thanks for any advice