prove that \(\displaystyle n/(n-2)+(n+1)/(n-1)=n^2\)
so \(\displaystyle \frac{{n!}}{{\left( {n - 2} \right)!\left( {n-(n-2)} \right)!}} + \frac{{\left( {n + 1} \right)!}}{{\left( {n - 1} \right)!\left( {n+1-(n-1)} \right)!}}\)
then \(\displaystyle \frac{{n!}}{{\left( {n - 2} \right)!\left( {2!} \right)}} + \frac{{\left( {n + 1} \right)!}}{{\left( {n - 1} \right)!\left( {2!} \right)}}\)
\(\displaystyle \frac{{n!}}{{\left( {n - 2} \right)!\left( {2} \right)}} + \frac{{\left( {(n + 1)n} \right)!}}{{\left( {(n - 1)!n} \right)\left( {2} \right)}}\)
\(\displaystyle \frac{{n!}}{{\left( {n - 2} \right)!\left( {2} \right)}} + \frac{{\left( {(n + 1)n} \right)!}}{{\left( {n!} \right)\left( {2} \right)}}\)
I'm not sure where to go from here
thanks for any advice
so \(\displaystyle \frac{{n!}}{{\left( {n - 2} \right)!\left( {n-(n-2)} \right)!}} + \frac{{\left( {n + 1} \right)!}}{{\left( {n - 1} \right)!\left( {n+1-(n-1)} \right)!}}\)
then \(\displaystyle \frac{{n!}}{{\left( {n - 2} \right)!\left( {2!} \right)}} + \frac{{\left( {n + 1} \right)!}}{{\left( {n - 1} \right)!\left( {2!} \right)}}\)
\(\displaystyle \frac{{n!}}{{\left( {n - 2} \right)!\left( {2} \right)}} + \frac{{\left( {(n + 1)n} \right)!}}{{\left( {(n - 1)!n} \right)\left( {2} \right)}}\)
\(\displaystyle \frac{{n!}}{{\left( {n - 2} \right)!\left( {2} \right)}} + \frac{{\left( {(n + 1)n} \right)!}}{{\left( {n!} \right)\left( {2} \right)}}\)
I'm not sure where to go from here
thanks for any advice