[math]P(x)y'' + Q(x)y' + R(x)y = \delta(x - s)[/math][math]a < x < b[/math]
I want to prove the following theorem:
[math]y'(x_{+}) - y'(x_{-}) = \frac{1}{P(x)}[/math]
when
[math]P(x) \neq 0[/math][math]y(a) = y(b) = 0[/math]
Any help would be appreciated.
I want to prove the following theorem:
[math]y'(x_{+}) - y'(x_{-}) = \frac{1}{P(x)}[/math]
when
[math]P(x) \neq 0[/math][math]y(a) = y(b) = 0[/math]
Any help would be appreciated.