logistic_guy
Full Member
- Joined
- Apr 17, 2024
- Messages
- 648
Let \(\displaystyle \mathcal{A}\) be the set of \(\displaystyle 2 \times 2\) matrices with real number entries. Recall that matrix multiplication is defined by
\(\displaystyle \begin{bmatrix}a & b \\c & d \end{bmatrix} \begin{bmatrix}p & q \\r & s \end{bmatrix} = \begin{bmatrix}ap + br & aq + bs \\cp + dr & cq + ds \end{bmatrix}\)
Let \(\displaystyle M = \begin{bmatrix}1 & 1 \\0 & 1 \end{bmatrix}\)
and let \(\displaystyle \mathcal{B} = \{X \in \mathcal{A} \ | \ MX = XM\}\)
Prove that if \(\displaystyle P, Q \in \mathcal{B}\), then \(\displaystyle P + Q \in \mathcal{B}\) (where \(\displaystyle +\) denotes the usual sum of two matrices).
\(\displaystyle \begin{bmatrix}a & b \\c & d \end{bmatrix} \begin{bmatrix}p & q \\r & s \end{bmatrix} = \begin{bmatrix}ap + br & aq + bs \\cp + dr & cq + ds \end{bmatrix}\)
Let \(\displaystyle M = \begin{bmatrix}1 & 1 \\0 & 1 \end{bmatrix}\)
and let \(\displaystyle \mathcal{B} = \{X \in \mathcal{A} \ | \ MX = XM\}\)
Prove that if \(\displaystyle P, Q \in \mathcal{B}\), then \(\displaystyle P + Q \in \mathcal{B}\) (where \(\displaystyle +\) denotes the usual sum of two matrices).