proof related to matrices - 2

logistic_guy

Senior Member
Joined
Apr 17, 2024
Messages
1,526
Let A\displaystyle \mathcal{A} be the set of 2×2\displaystyle 2 \times 2 matrices with real number entries. Recall that matrix multiplication is defined by

[abcd][pqrs]=[ap+braq+bscp+drcq+ds]\displaystyle \begin{bmatrix}a & b \\c & d \end{bmatrix} \begin{bmatrix}p & q \\r & s \end{bmatrix} = \begin{bmatrix}ap + br & aq + bs \\cp + dr & cq + ds \end{bmatrix}

Let M=[1101]\displaystyle M = \begin{bmatrix}1 & 1 \\0 & 1 \end{bmatrix}

and let B={XA  MX=XM}\displaystyle \mathcal{B} = \{X \in \mathcal{A} \ | \ MX = XM\}

Prove that if P,QB\displaystyle P, Q \in \mathcal{B}, then PQB\displaystyle P \cdot Q \in \mathcal{B} (where \displaystyle \cdot denotes the usual product of two matrices).
 
Let A\displaystyle \mathcal{A} be the set of 2×2\displaystyle 2 \times 2 matrices with real number entries. Recall that matrix multiplication is defined by

[abcd][pqrs]=[ap+braq+bscp+drcq+ds]\displaystyle \begin{bmatrix}a & b \\c & d \end{bmatrix} \begin{bmatrix}p & q \\r & s \end{bmatrix} = \begin{bmatrix}ap + br & aq + bs \\cp + dr & cq + ds \end{bmatrix}

Let M=[1101]\displaystyle M = \begin{bmatrix}1 & 1 \\0 & 1 \end{bmatrix}

and let B={XA  MX=XM}\displaystyle \mathcal{B} = \{X \in \mathcal{A} \ | \ MX = XM\}

Prove that if P,QB\displaystyle P, Q \in \mathcal{B}, then PQB\displaystyle P \cdot Q \in \mathcal{B} (where \displaystyle \cdot denotes the usual product of two matrices).
show us your effort/s to solve this problem.
 
I will assume P,QB\displaystyle P, Q \in \mathcal{B}. And I will use the associative property of matrix multiplication.

M(PQ)=(MP)Q=MPQ\displaystyle M(P \cdot Q) = (M \cdot P)Q = MPQ

Since PB\displaystyle P \in \mathcal{B}, I can switch the positions of M\displaystyle M and P\displaystyle P.

MPQ=PMQ\displaystyle MPQ = PMQ

Since QB\displaystyle Q \in \mathcal{B}, I can switch the positions of M\displaystyle M and Q\displaystyle Q.

PMQ=PQM=(PQ)M\displaystyle PMQ = PQM = (P \cdot Q)M

Since M(PQ)=(PQ)M\displaystyle M(P \cdot Q) = (P \cdot Q)M, then PQB\displaystyle P \cdot Q \in \mathcal{B}.
 
Top