Question: If \(\displaystyle \lim_{x \to a} f(x) = L\) and \(\displaystyle \lim_{x \to a} g(x) = M\), then \(\displaystyle \lim_{x \to a} (f(x)g(x)) = LM\).
Proof from James Stewarts':
Proof from James Stewarts':
Problem: I don't exactly how they made the statements with the *s. Where did these inequalities come from and how can they be asserted? Also, I'm kind of iffy on why we need three \(\displaystyle \delta\)s ... Any help would be appreciated!Let \(\displaystyle \epsilon > 0\) . We want to find \(\displaystyle \delta > 0\) such that \(\displaystyle |f(x)g(x) - LM|\) whenever \(\displaystyle 0 < |x - a| < \delta\).
\(\displaystyle \left| f(x)g(x) - LM \right|\)
\(\displaystyle = \left| f(x)g(x) - Lg(x) + Lg(x) - LM \right|\)
\(\displaystyle = \left|\left[f(x) - L\right]g(x) + L\left[g(x) - M\right]\right|\)
\(\displaystyle \leq \left|\left[f(x) - L\right]\left(g(x)\right)\right| + \left|\left(L\right)\left[g(x) - M\right]\right|\) (Triangle inequality)
\(\displaystyle = \left|f(x) - L\right|\left|g(x)\right| + \left|L\right|\left|g(x) - M\right|\)
We want to make each of these terms less than \(\displaystyle \frac{\epsilon}{2}\).
Since \(\displaystyle \lim_{x \to a} g(x) = M\), there is a number \(\displaystyle \delta_{1} > 0\) such that: \(\displaystyle |g(x) - M| < \frac{\epsilon}{2\left(1 + |L|\right)}\)* whenever \(\displaystyle 0 < |x - a| < \delta_{1}\).
Also, there is \(\displaystyle \delta_{2}>0\) such that if \(\displaystyle 0 < |x - a| < \delta_{2}\), then \(\displaystyle |g(x) - M| < 1\) and therefore:
\(\displaystyle \left|g(x)\right| = \left|g(x) - M + M\right| \hspace{4mm} \leq \hspace{4mm} \left|g(x) - M\right| + \left|M\right| \hspace{4mm}< \hspace{4mm} 1 + \left|M\right|\)
Since \(\displaystyle \lim_{x \to a}f(x) = L\), there is a number \(\displaystyle \delta_{3}>0\) such that: \(\displaystyle \left|f(x) - L\right|<\frac{\epsilon}{2\left(1+|M|\right)}\)* whenever \(\displaystyle 0 < |x - a| < \delta_{3}\).
Let \(\displaystyle \delta = min\left\{\delta_{1},\delta_{2},\delta_{3}\right\}\). If \(\displaystyle 0 < |x - a| < \delta\).
Then we have \(\displaystyle 0 < |x-a| <\delta_{1}, \hspace{4mm} 0 < | x-a| < \delta_{2}, \hspace{4mm} 0 <|x-a|<\delta_{3}\)
so we can combine the inequalities to obtain:
\(\displaystyle \left|f(x)g(x) - LM\right|\)
\(\displaystyle \leq \hspace{4mm}\left|f(x)-L\right| \left|g(x)\right| \hspace{4mm}+ \hspace{4mm}\left|L\right|\left|g(x)-M\right|\)
\(\displaystyle = \frac{\epsilon}{2\left(1 + |M|\right)} \left(1 + |M|\right) \hspace{4mm} + \hspace{4mm} |L| \frac{\epsilon}{2\left(1 + |L|\right)\)
\(\displaystyle < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon\)
Therefore, \(\displaystyle \lim_{x \to a} f(x)g(x) = LM\)