proof involving log

G

Guest

Guest
For a>0, a can not equal 1, x>0, prove that logsubscript a(1/x)= log subscript (1/a) X

ya..whaaaa..

thanks for the help in advance
 
These are true: \(\displaystyle \L
\begin{array}{l}
\log _a \left( {\frac{1}{x}} \right) = \frac{{\ln \left( {\frac{1}{x}} \right)}}{{\ln (a)}} = \frac{{ - \ln (x)}}{{\ln (a)}} \\
\log _{\frac{1}{a}} \left( x \right) = \frac{{\ln (x)}}{{\ln \left( {\frac{1}{a}} \right)}} \\
\end{array}\)

You finish this off
 
bittersweet said:
what does "ln" mean? or what is it?..
That is the natural logarithm.
It happens to be the only logarithm many of us think is worth teaching.
 
Hello, bittersweet!

For \(\displaystyle a\,>\,0,\;a\,\neq\,0\), prove that: \(\displaystyle \log_a\left(\frac{1}{x}\right)\:=\:\log_{\frac{1}{a}}(x)\)
Let \(\displaystyle p\:=\:\log_a\left(\frac{1}{x}\right)\;\;\Rightarrow\;\;a^p\:=\:\frac{1}{x}\;\;\Rightarrow\;\;x\:=\:\frac{1}{a^p}\)

Let \(\displaystyle q\:=\:\log_{\frac{1}{a}}(x)\;\;\Rightarrow\;\;\left(\frac{1}{a}\right)^q\:=\:x\;\;\Rightarrow\;\;x\:=\:\frac{1}{a^q}\)

Hence: \(\displaystyle \,\frac{1}{a^p}\:=\:\frac{1}{a^q}\;\;\Rightarrow\;\;a^p\:=\:a^q\;\;\Rightarrow\;\;p\:=\:q\)

Therefore: \(\displaystyle \log_a\left(\frac{1}{x}\right)\;=\;\log_{\frac{1}{a}}(x)\)
 
Top