Let [imath]\mathbb{K}[/imath] be a field, let [imath]V[/imath] be a vector space over [imath]\mathbb{K}[/imath], let [imath]n \in \mathbb{N}\setminus\{0\}[/imath] and let [imath]\alpha \in \mathbb{K}\setminus\{0\}[/imath]. Prove that [imath]\text{span}(v_1,\dots,v_i,\dots,v_n) = \text{span}(v_1,\dots,\alpha v_i,\dots,v_n)[/imath] for each [imath]i \in \{1,\dots,n\}[/imath].
My attempt: let [imath]i \in \{1,\dots,n\}[/imath] be arbitrary. Let By hypothesis, [imath]\alpha \ne 0[/imath] and so there exists [imath]\alpha^{-1} \in \mathbb{K}[/imath]. Since [imath]\mathbb{K}[/imath] is a field, for each [imath]\beta \in \mathbb{K}[/imath] we have [imath]\beta=1_\mathbb{K} \beta = (\alpha^{-1} \alpha) \beta = (\alpha^{-1}\beta)\alpha[/imath] with [imath]\alpha^{-1} \beta \in \mathbb{K}[/imath] due to the closure properties of fields. So, for elements [imath]v_1,\dots,v_n[/imath] of [imath]V[/imath] and coefficients [imath]c_1,\dots,c_n[/imath] of [imath]\mathbb{K}[/imath], we have:
[math]c_1 v_1+\dots+c_i v_i+\dots + c_n v_n = c_1 v_1 + \dots +(\alpha^{-1}c_i)(\alpha v_i) + \dots + c_n v_n[/math]
The LHS is a linear combination of the vectors [imath]v_1,\dots, v_i, \dots, v_n[/imath] while the RHS is a linear combination of the vectors [imath]v_1,\dots,\alpha v_i, \dots, v_n[/imath]. So the equality of LHS and RHS implies [imath]\text{span}(v_1,\dots,v_i,\dots,v_n) \subseteq \text{span}(v_1,\dots,\alpha v_i,\dots,v_n)[/imath] and [imath]\text{span}(v_1,\dots,\alpha v_i,\dots,v_n)\subseteq \text{span}(v_1,\dots,v_i,\dots,v_n)[/imath], ending the proof.
Question: is my proof correct? If not, can someone point out possible mistakes?
My attempt: let [imath]i \in \{1,\dots,n\}[/imath] be arbitrary. Let By hypothesis, [imath]\alpha \ne 0[/imath] and so there exists [imath]\alpha^{-1} \in \mathbb{K}[/imath]. Since [imath]\mathbb{K}[/imath] is a field, for each [imath]\beta \in \mathbb{K}[/imath] we have [imath]\beta=1_\mathbb{K} \beta = (\alpha^{-1} \alpha) \beta = (\alpha^{-1}\beta)\alpha[/imath] with [imath]\alpha^{-1} \beta \in \mathbb{K}[/imath] due to the closure properties of fields. So, for elements [imath]v_1,\dots,v_n[/imath] of [imath]V[/imath] and coefficients [imath]c_1,\dots,c_n[/imath] of [imath]\mathbb{K}[/imath], we have:
[math]c_1 v_1+\dots+c_i v_i+\dots + c_n v_n = c_1 v_1 + \dots +(\alpha^{-1}c_i)(\alpha v_i) + \dots + c_n v_n[/math]
The LHS is a linear combination of the vectors [imath]v_1,\dots, v_i, \dots, v_n[/imath] while the RHS is a linear combination of the vectors [imath]v_1,\dots,\alpha v_i, \dots, v_n[/imath]. So the equality of LHS and RHS implies [imath]\text{span}(v_1,\dots,v_i,\dots,v_n) \subseteq \text{span}(v_1,\dots,\alpha v_i,\dots,v_n)[/imath] and [imath]\text{span}(v_1,\dots,\alpha v_i,\dots,v_n)\subseteq \text{span}(v_1,\dots,v_i,\dots,v_n)[/imath], ending the proof.
Question: is my proof correct? If not, can someone point out possible mistakes?
Last edited: