I am trying to solve next problem:
12+42+72+102+132 + ... + (6n+1)2 = (2n+1)(12n2 +9n + 1) for n>=1
I found myself stuck at point, where i need to replace k by k+1 and finish proof. Usually when you have something like this: 1+2+3+4+5+...+n+(n+1) = (n+1)(n+2)/2, bold will be replaced with n(n+1)/2, so you can solve it then. But it doesn't seem to work out with problem i described above. This is where i stuck:
12+42+72+102+132 + ... + (6k+1)2 +(6k+7)2 = (2k+3)(12k2+33k+22)
(2n+1)(12n2 +9n + 1) + (6k+7)
Can anyone please explain me what i am doing wrong?
The most likely situations are that (1) there is an error in the book, or (2) the OP did not transcribe the problem correctly.
\(\displaystyle \text {PROVE: } \displaystyle n \in \mathbb Z^+ \implies (6n + 1)^2 + \sum_{j=1}^{n+1} (3j - 2)^2 \le (2n + 1)(12n^2 + 9n + 1) \implies\)
\(\displaystyle \displaystyle (6n + 1)^2 + \sum_{j=1}^{n+1} (3j - 2)^2 \le 24n^3 + 30n^2 + 11n + 1.\)
\(\displaystyle \displaystyle n = 1 \implies (6 * 1 + 1)^2 + \sum_{j=1}^{1+1} (3j - 2)^2 = 7^2 + 1^2 + 4^2 = 66 =\)
\(\displaystyle \displaystyle 24 + 30 + 11 + 1 \le 24 * 1^3 + 30 * 1^2 + 11 * 1 + 1.\)
\(\displaystyle \displaystyle n = 1 \implies (6n + 1)^2 + \sum_{j=1}^{n+1} (3j - 2)^2 \le 24n^3 + 30n^2 + 11n + 1.\)
\(\displaystyle \therefore \exists \ \mathbb K \text { such that } \mathbb K \text { is not empty, and } k \in \mathbb K \implies\)
\(\displaystyle \displaystyle k \in \mathbb Z^+ \text { and } (6k + 1)^2 + \sum_{j=1}^{k+1} (3j - 2)^2 \le 24k^3 + 30k^2 + 11k + 1.\)
\(\displaystyle \{ 6 * ( k + 1 ) + 1\}^2\) \(\displaystyle \displaystyle + \sum_{j=1}^{ ( k + 1 ) + 1 } (3j - 2)^2 =\)
\(\displaystyle \displaystyle (6k + 6 + 1)^2 + \sum_{j=1}^{k+2} (3j - 2)^2 = (6k + 7)^2 + \{3(k + 2) - 2\}^2 + \sum_{j=1}^{k+1} (3j - 2)^2 =\)
\(\displaystyle \displaystyle (6k + 7)^2 + (3k + 6 - 2)^2 + \sum_{j=1}^{k+1} (3j - 2)^2 = (6k + 7)^2 + (3k + 4)^2 + \sum_{j=1}^{k+1} (3j - 2)^2 =\)
\(\displaystyle \displaystyle 36k^2 + 84k + 49 + 9k^2 + 24k + 16 + \sum_{j=1}^{k+1} (3j - 2)^2 =\)
\(\displaystyle \displaystyle (36k^2 + 12k + 1) + 9k^2 + 96k + 64 + \sum_{j=1}^{k+1} (3j - 2)^2 =\)
\(\displaystyle \displaystyle 9k^2 + 96k + 64 + \left ( (6k + 1)^2 + \sum_{j=1}^{k+1} (3j - 2)^2 \right ).\)
\(\displaystyle \therefore \displaystyle \{6(k + 1) + 1\}^2 + \sum_{j=1}^{(k+1)+1} (3j - 2)^2 = 9k^2 + 96k + 64 + \left ( (6k + 1)^2 + \sum_{j=1}^{k+1} (3j - 2)^2 \right ).\)
\(\displaystyle \{2(k + 1) + 1\}\{12(k + 1)^2 + 9(k + 1) + 1\} = (2k + 3)(12k^2 + 33k + 22) =\)
\(\displaystyle 24k^3 + 66k^2 + 44k + 36k^2 + 99k + 66 = 24k^3 +102k^2 + 143k + 66 =\)
\(\displaystyle 72k^2 + 132k + 65 + (24k^3 + 30k^2 + 11k + 1) .\)
\(\displaystyle 72k^2 + 132k + 65 - (9k^2 + 96k + 64) = 63k^2 + 34k + 1 > 0 \ \because \ k \in \mathbb Z^+.\)
\(\displaystyle \text {Or } 9k^2 + 96k + 64 < 72k^2 + 132k + 65.\)
\(\displaystyle \displaystyle (6k + 1)^2 + \sum_{j=1}^{k+1} (3j - 2)^2 \le 24k^3 + 30k^2 + 11k + 1.\)
\(\displaystyle \therefore \displaystyle 9k^2 + 96k + 64 + (6k + 1)^2 + \sum_{j=1}^{k+1} (3j - 2)^2 \le \\
72k^2 + 132k + 65 + (24k^3 + 30k^2 + 11k + 1) \implies\)
\(\displaystyle \displaystyle \{6(k + 1) + 1\}^2 + \sum_{j=1}^{(k+1)+1} (3j - 2)^2 \le \\
\{2(k + 1) + 1\}\{12(k + 1)^2 + 9(k + 1) + 1\}.\)
\(\displaystyle \text {Q.E.D.}\)
Dumb question (if that even was the question). I think it may have been because the equality holds for n = 1 so it does not appear to be utterly fanciful. A ton of ugly algebra to demonstrate a basic technique.