Tried the following proof by cases:
Prove: [math](P\wedge Q)\vee (P\wedge R)\implies P\wedge(Q\vee R)[/math]Proof:
1)[math](P\wedge Q)\vee (P\wedge R)[/math] Assumption
2)[math](P\wedge Q)[/math]Hypothesis
3)[math] P[/math]2, Conjuncion elem.
4)[math]Q[/math]2, Conjunction elem.
5)[math]Q\vee R[/math]4,Disjunction introduction
6)[math] P\wedge(Q\vee R)[/math]3,5 Conjuction Introduction
7)[math](P\wedge Q)\implies P\wedge(Q\vee R)[/math]2 to 6 by conditional proof
8)[math]P\wedge R[/math]Hypothesis
9)[math] R[/math]8,Conjuction elem.
10)[math] R\vee Q[/math]9,Disjunction Introduction
11)[math] Q\vee R[/math]10, commutativity
12[math]P\wedge (Q\vee R)[/math]3,11 conjuction Introduction
13)[math]P\wedge R\implies P\wedge (Q\vee R)[/math] 8 to 12 by conditional proof
14)[math]P\wedge (Q\vee R)[/math]1,7,13 using proof by cases
But somebody insisted that i did a fatal mistake somewhere
where
12
Prove: [math](P\wedge Q)\vee (P\wedge R)\implies P\wedge(Q\vee R)[/math]Proof:
1)[math](P\wedge Q)\vee (P\wedge R)[/math] Assumption
2)[math](P\wedge Q)[/math]Hypothesis
3)[math] P[/math]2, Conjuncion elem.
4)[math]Q[/math]2, Conjunction elem.
5)[math]Q\vee R[/math]4,Disjunction introduction
6)[math] P\wedge(Q\vee R)[/math]3,5 Conjuction Introduction
7)[math](P\wedge Q)\implies P\wedge(Q\vee R)[/math]2 to 6 by conditional proof
8)[math]P\wedge R[/math]Hypothesis
9)[math] R[/math]8,Conjuction elem.
10)[math] R\vee Q[/math]9,Disjunction Introduction
11)[math] Q\vee R[/math]10, commutativity
12[math]P\wedge (Q\vee R)[/math]3,11 conjuction Introduction
13)[math]P\wedge R\implies P\wedge (Q\vee R)[/math] 8 to 12 by conditional proof
14)[math]P\wedge (Q\vee R)[/math]1,7,13 using proof by cases
But somebody insisted that i did a fatal mistake somewhere
where
12