toughcookie723
New member
- Joined
- Oct 6, 2011
- Messages
- 11
Would really appreciate if someone took a look at whether this proof is correct:
The sum of n non-negative integers, each less than n, is less than n^2.
0+1+2+3+......+(n-1)+(n-1)< n^2--proved it's true
Therefore, if true for n=k, then true for n=k+1.
0+1+2+3+...+(k-1)+(k-1) < k^2
+2k+1 +2k+1
____________________________
0+1+2+3+...+(k-1)+(k-1)+2k+1 < k^2+2k+1
0+1+2+....+2k-2+2k+1 < k^2+2k+1
0+1+2+......+(2k-1)+2k< k^2+2k+1
0+1+2+....+2k < (k+1)^2
0+1+2+......+(k+1)-1+ (k+1)-1< (k+1)^2
Thank you!
The sum of n non-negative integers, each less than n, is less than n^2.
0+1+2+3+......+(n-1)+(n-1)< n^2--proved it's true
Therefore, if true for n=k, then true for n=k+1.
0+1+2+3+...+(k-1)+(k-1) < k^2
+2k+1 +2k+1
____________________________
0+1+2+3+...+(k-1)+(k-1)+2k+1 < k^2+2k+1
0+1+2+....+2k-2+2k+1 < k^2+2k+1
0+1+2+......+(2k-1)+2k< k^2+2k+1
0+1+2+....+2k < (k+1)^2
0+1+2+......+(k+1)-1+ (k+1)-1< (k+1)^2
Thank you!