Proof a Linear Congruence

KimO

New member
Joined
Oct 13, 2015
Messages
2
bY2kJ8.png


Thanks in advance.

Edited. It's a exercise from Victor Shoup's book.
 
Last edited:
Let [FONT=MathJax_Math-italic]a[FONT=MathJax_Main]1[/FONT][FONT=MathJax_Main],[/FONT][FONT=MathJax_Main]…[/FONT][FONT=MathJax_Main],[/FONT][FONT=MathJax_Math-italic]a[/FONT][FONT=MathJax_Math-italic]k[/FONT][FONT=MathJax_Main],[/FONT][FONT=MathJax_Math-italic]b[/FONT][FONT=MathJax_Main],[/FONT][FONT=MathJax_Math-italic]n[/FONT]a1,…,ak,b,n[/FONT] be integers with [FONT=MathJax_Math-italic]n[FONT=MathJax_Main]>[/FONT][FONT=MathJax_Main]0[/FONT]n>0[/FONT].
Show that the congruence
[FONT=MathJax_Math-italic]a[FONT=MathJax_Main]1[/FONT][FONT=MathJax_Math-italic]z[/FONT][FONT=MathJax_Main]1[/FONT][FONT=MathJax_Main]+[/FONT][FONT=MathJax_Main]⋯[/FONT][FONT=MathJax_Main]+[/FONT][FONT=MathJax_Math-italic]a[/FONT][FONT=MathJax_Math-italic]k[/FONT][FONT=MathJax_Math-italic]z[/FONT][FONT=MathJax_Math-italic]k[/FONT][FONT=MathJax_Main]≡[/FONT][FONT=MathJax_Math-italic]b[/FONT][FONT=MathJax_Main]([/FONT][FONT=MathJax_Main]mod n[/FONT][FONT=MathJax_Main])[/FONT]a1z1+⋯+akzk≡b(mod n)[/FONT] has a solution [FONT=MathJax_Math-italic]z[FONT=MathJax_Main]1[/FONT][FONT=MathJax_Main],[/FONT][FONT=MathJax_Main]…[/FONT][FONT=MathJax_Main],[/FONT][FONT=MathJax_Math-italic]z[/FONT][FONT=MathJax_Math-italic]k[/FONT][FONT=MathJax_Main]∈[/FONT][FONT=MathJax_AMS]Z[/FONT]z1,…,zk∈Z[/FONT] if and only if [FONT=MathJax_Math-italic]d[FONT=MathJax_Main]|[/FONT][FONT=MathJax_Math-italic]b[/FONT]d|b[/FONT], where
[FONT=MathJax_Math-italic]d[FONT=MathJax_Main]:=[/FONT][FONT=MathJax_Main]gcd[/FONT][FONT=MathJax_Main]([/FONT][FONT=MathJax_Math-italic]a[/FONT][FONT=MathJax_Main]1[/FONT][FONT=MathJax_Main],[/FONT][FONT=MathJax_Main]…[/FONT][FONT=MathJax_Main],[/FONT][FONT=MathJax_Math-italic]a[/FONT][FONT=MathJax_Math-italic]k[/FONT][FONT=MathJax_Main],[/FONT][FONT=MathJax_Math-italic]n[/FONT][FONT=MathJax_Main])[/FONT]d:=gcd(a1,…,ak,n)[/FONT].

I tried to find solution this way but i didn't bring the end

There exist [FONT=MathJax_Math-italic]z[FONT=MathJax_Main]1[/FONT][FONT=MathJax_Main],[/FONT][FONT=MathJax_Main]…[/FONT][FONT=MathJax_Main],[/FONT][FONT=MathJax_Math-italic]z[/FONT][FONT=MathJax_Math-italic]k[/FONT][FONT=MathJax_Main],[/FONT][FONT=MathJax_Math-italic]z[/FONT][/FONT]such that [FONT=MathJax_Math-italic]a[FONT=MathJax_Main]1[/FONT][/FONT][FONT=MathJax_Math-italic]z[FONT=MathJax_Main]1[/FONT][/FONT][FONT=MathJax_Main]+[/FONT][FONT=MathJax_Main]⋯[/FONT][FONT=MathJax_Math-italic]a[FONT=MathJax_Math-italic]k[/FONT][/FONT][FONT=MathJax_Math-italic]z[FONT=MathJax_Math-italic]k[/FONT][/FONT][FONT=MathJax_Main]+[/FONT][FONT=MathJax_Math-italic]n[/FONT][FONT=MathJax_Math-italic]z[/FONT][FONT=MathJax_Main]=[/FONT][FONT=MathJax_Main]gcd[/FONT][FONT=MathJax_Main]([/FONT][FONT=MathJax_Math-italic]a[FONT=MathJax_Main]1[/FONT][/FONT][FONT=MathJax_Main],[/FONT][FONT=MathJax_Main]…[/FONT][FONT=MathJax_Main],[/FONT][FONT=MathJax_Math-italic]a[FONT=MathJax_Math-italic]k[/FONT][/FONT][FONT=MathJax_Main],[/FONT][FONT=MathJax_Math-italic]n[/FONT][FONT=MathJax_Main])[/FONT][FONT=MathJax_Main].[/FONT]

The cramped formatting and textual "stutters" make this post very difficult to read. The following is my guess as to the intended meaning:



Let a1, a2, ..., ak, b, and n be integers, with n > 0.

Suppose you have the following congruence:

. . . . .a1z1 + a2z2 + ... + akzk = b(mod n)

Show that this congruence has a solution z1, z2, ..., zk, where the zi are integers, if and only if d divides b, where d is the GCD of a1, a2, ..., ak, and n.




Is this correct?

Thank you! ;)
 
bY2kJ8.png


Sorry about that. It's a question from Victor Shoup's book.
 

Attachments

  • soru.jpg
    soru.jpg
    15.9 KB · Views: 1
If the gcd divides b, then as the equation \(\displaystyle kn+\sum a_ix_i = d\) has some solution \(\displaystyle (k,x_1,...,x_n)\), letting \(\displaystyle z_i=\frac{b}{d}x_i, k'=\frac{b}{d}k\) gives what you want.

Conversely, if \(\displaystyle k'n+\sum a_iz_i = b\), then you may* use the fact that the gcd is the smallest linear combination, and divides all others, to get the result.

*You may need to prove this.
 
Top