Hello, gymnast24!
Find \(\displaystyle F'(0)\), given that: \(\displaystyle F(x)\:=\
2x\.+\.e^x)\cdot g(x)\) and \(\displaystyle g(0)\,=\,9,\;g'(0)\,=\,0.\)
Never mind your version of the Product Rule (too confusing) . . . just do it!
We have:\(\displaystyle \,F(x)\;=\;(2x\,+\,e^x)\cdot g(x)\)
Product Rule: \(\displaystyle \,F'(x)\:=\
2x\,+\,e^x)\cdot g'(x)\,+\,(2\,+\,e^x)\cdot g(x)\)
When \(\displaystyle x\,=\,0\), we have:
\(\displaystyle \;\;\;F'(0)\;=\;(2\cdot0\,+\,e^0)\cdot g'(0)\,+\,(2\,+\,e^0)\cdot g(0)\)
\(\displaystyle \;\;\;F'(x)\;=\;(0\,+\,1)\cdot 0 \,+\,(2\,+\,1)\cdot9 \:=\:0\,+\,3\cdot9\:=\:27\)