I would use coordinate geometry with point B at the origin, and the line BE becomes:
[MATH]y=mx[/MATH]
Which is tangent to the circle:
[MATH](x-1)^2+\left(y-\frac{1}{2}\right)^2=\frac{1}{4}[/MATH]
Substitute for \(y\):
[MATH](x-1)^2+\left(mx-\frac{1}{2}\right)^2=\frac{1}{4}[/MATH]
Arrange in standard form:
[MATH](m^2+1)x^2-(m+2)x+1=0[/MATH]
Requiring the discriminant to be zero, we obtain (discarding the smaller root):
[MATH](m+2)^2-4(m^2+1)=0[/MATH]
[MATH]m=\frac{4}{3}[/MATH]
Hence:
[MATH]\overline{BE}=\sqrt{\left(\frac{3}{4}\right)^2+1}=\frac{5}{4}[/MATH]