Assuming n is an integer, the binomial theorem says
\(\displaystyle \displaystyle{ \left(1\, +\, y\right)^n\, =\, \sum_{m\,=\,0}^{m\,=\,n}\space \left(_{n}C_{m}\space y^m \right) }\)
or
\(\displaystyle \displaystyle{ \left(1\, +\, y\right)^n \, -\, 1\, =\, y\space \sum_{m\,=\,0}^{m\,=\,n\,-\,1}\space _{n}C_{m\,+\,1}\space y^m }\)
where \(\displaystyle _{n}C_{m}\) is the binomial coefficient.
So we have
\(\displaystyle \displaystyle{ \frac{\left(1\,+\,\dfrac{x}{2}\right)^n \,-\,1}{\left(1\,+\,x\right)^n\, -\,1}}\, = \,\dfrac{\left(\dfrac{x}{2}\right) \space \displaystyle{\sum_{m\,=\,0}^{m\,=\,n\,-\,1}}\space _{n}C_{m\,+\,1} \space \left(\dfrac{x}{2}\right)^m}{ \left(x\right) \space \displaystyle{ \sum_{m\,=\,0}^{m\,=\,n\,-\,1}}\space _{n}C_{m\,+\,1}\space x^m} \,= \, \left(\dfrac{1}{2}\right)\, \left(\dfrac{ \displaystyle{ \sum_{m\,=\,0}^{m\,=\,n\,-\,1} } \space _{n}C_{m\,+\,1}\space \left(\dfrac{x}{2}\right)^m}{ \displaystyle{ \sum_{m\,=\,0}^{m\,=\,n\,-\,1} } \space _{n}C_{m\,+\,1}\space x^m}\right) \)
EDIT: Be careful (x/2) is not always less than x. Oh, and BTW, the statement isn't true for all x.