Let's look at Newton's method, which is recursively defined as:
[MATH]t_{n+1}=t_{n}-\frac{f(t_{n})}{f'(t_{n})}[/MATH]
We have:
[MATH]f(t)=e^{3t}\cos(3t)-24t-1[/MATH]
Hence:
[MATH]f'(t)=3e^{3t}(\cos(3t)-\sin(3t))-24[/MATH]
And so we have the recursion:
[MATH]t_{n+1}=t_{n}-\frac{e^{3t_n}\cos(3t_n)-24t_n-1}{3e^{3t_n}(\cos(3t_n)-\sin(3t_n))-24}[/MATH]
Now, let's let \(t_0=31\) and we then find through successive computations:
[MATH]t_1\approx30.916403049103989863393159693[/MATH]
[MATH]t_2\approx30.8939130027647479035062935806260[/MATH]
[MATH]t_3\approx30.89233525175866335483577126330557608[/MATH]
[MATH]t_4\approx30.892327760467994341654295445992287175415[/MATH]
[MATH]t_5\approx30.8923277602996335116343627095320805794798717[/MATH]
[MATH]t_6\approx30.89232776029963351154932660224844502797447100742[/MATH]
[MATH]t_7\approx30.892327760299633511549326602248445027952777588797055[/MATH]
At this point I would be comfortable with the level of accuracy, and state:
[MATH]t\approx30.892327760299633511549326602248445028[/MATH]
For comparison, Desmos gives this value as:
[MATH]t=\frac{59\pi}{6}\approx30.89232776029963351154932660224844502793883242718854057292...[/MATH]
And so I would give the approximate location of \(A\) as:
[MATH](30.892327760299633511549326602248445028,-0.0555555555555555555555555555555555555)[/MATH]
