Hello, Sga001!
This apparent contradiction occurs frequently in Calculus.
. . We must be constantly alert for it.
Example: \(\displaystyle \L\int(x + 1)\,dx\)
Method #1: \(\displaystyle \L\:\int x\,dx\,+\,\int 1\,dx \;=\;\frac{1}{2}x^2\,+\,x\,+\,C_1\)
Method #2: \(\displaystyle \,\text{Let }u\:=\:x\,+\,1\;\;\Rightarrow\;\;du\,=\,dx\)
Substitute: \(\displaystyle \L\:\int u\,du \;=\;\frac{1}{2}u^2\,+\,k\;=\;\frac{1}{2}(x\,+\,1)^2\,+\,k\)
. . . . . . . . \(\displaystyle \L= \:\frac{1}{2}x^2\,+\,x\,+\,\underbrace{\frac{1}{4}\,+\,k}\)
Since \(\displaystyle \frac{1}{4}\,+\,k\) (one-quarter plus an arbitrary constant)
. . is another arbitrary constant \(\displaystyle (C_2)\) , we have: \(\displaystyle \L\,\frac{1}{2}x^2\,+\,x\,+\,C_2\)
. . and, of course, \(\displaystyle C_1\,=\,C_2\)
But \(\displaystyle C_1\) and \(\displaystyle k\) are not independent.
. . They are related by: \(\displaystyle C_1 \:=\:\frac{1}{4}\,+\,k\)
This is a very subtle and evasive concept.
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
In your problem, you integrated two ways and got two answers.
\(\displaystyle \text{Method #1: }\:\ln y \;=\;-\frac{1}{2}x^2\,-\,x\,+\,C_1\)
\(\displaystyle \text{Method #2: }\:\ln y \:=\:-\frac{1}{2}(x\,+\,1)^2\,+\,k \:=\:-\frac{1}{2}x^2\,-\,x\,\underbrace{-\,\frac{1}{4}\,+\,k}_{C_2}\)
Note: The original constants of integration, \(\displaystyle C_1\) and \(\displaystyle k\), are not independent.
. . . . .They are related: \(\displaystyle C_1\:=\:-\frac{1}{4}\,+\,k\;\;\Rightarrow\;\;k\:=\:C_1\,+\,\frac{1}{4}\)
So the second line should have looked like this:
. . \(\displaystyle \text{Method #2: }\;\ln y \:=\;-\frac{1}{2}(x\,+\,1)^2\,+\,C_1\,+\,\frac{1}{4}\)
We simply weren't aware of it.