manishpamnani169
New member
- Joined
- Oct 6, 2017
- Messages
- 5
We have a question which says:-
Prove for any natural number n that:-
22 + 52 + 82 + ··· + (3n − 1)2 = 1/2n(6n2 + 3n − 1)
and here is the solution:-
P(n): 22+52+82+ . . .+ (3n-1)2 = 1/2n(6n2 + 3n − 1)
For 'n' = 1, P(1) = 22 = 1/2(1)[6(1)2+3(1) -1 ]
4 = 1/2(1)[6(1)2+3(1)-1]
4 = 1/2 * 8
4 = 4
LHS = RHS
So, P(1) is true.
Assume that P(k) is true for some integer 'k'
P(k):- 22+52+82+ . . .+ (3k-1)2 = 1/2k(6k2 + 3k − 1)------------ eq(1)
We shall now prove that P(k+1) is true. Now we have:-
22+52+82+ . . .+ (3k-1)2 +[3(k+1)-1]2 = 1/2k(6k2 + 3k − 1) +[3(k+1) -1]2
using LHS,
=> 22+52+82+ . . .+ (3k-1)2 +[3(k+1)-1]2
=> 1/2k(6k2 + 3k − 1) + [3(k+1)-1]2 ---- Using eq(1)
=> 1/2k(6k2+ 3k − 1) + 9(k+1)2 - 6(k+1) + 1
Now how 1/2k(6k2 + 3k − 1) + [3(k+1)-1]2 becomes 1/2k(6k2+ 3k − 1) + 9(k+1)2 - 6(k+1) + 1
Can anybody explain?![Confused :confused: :confused:]()
Prove for any natural number n that:-
22 + 52 + 82 + ··· + (3n − 1)2 = 1/2n(6n2 + 3n − 1)
and here is the solution:-
P(n): 22+52+82+ . . .+ (3n-1)2 = 1/2n(6n2 + 3n − 1)
For 'n' = 1, P(1) = 22 = 1/2(1)[6(1)2+3(1) -1 ]
4 = 1/2(1)[6(1)2+3(1)-1]
4 = 1/2 * 8
4 = 4
LHS = RHS
So, P(1) is true.
Assume that P(k) is true for some integer 'k'
P(k):- 22+52+82+ . . .+ (3k-1)2 = 1/2k(6k2 + 3k − 1)------------ eq(1)
We shall now prove that P(k+1) is true. Now we have:-
22+52+82+ . . .+ (3k-1)2 +[3(k+1)-1]2 = 1/2k(6k2 + 3k − 1) +[3(k+1) -1]2
using LHS,
=> 22+52+82+ . . .+ (3k-1)2 +[3(k+1)-1]2
=> 1/2k(6k2 + 3k − 1) + [3(k+1)-1]2 ---- Using eq(1)
=> 1/2k(6k2+ 3k − 1) + 9(k+1)2 - 6(k+1) + 1
Now how 1/2k(6k2 + 3k − 1) + [3(k+1)-1]2 becomes 1/2k(6k2+ 3k − 1) + 9(k+1)2 - 6(k+1) + 1
Can anybody explain?