problem regarding determinant

nisar_cck

New member
Joined
Sep 17, 2005
Messages
3
find the value of determinant by using properties.write steps.

1st row x^3 y^3 z^3

2nd row x^2 y^2 z^2

3rd row y+z x+z x+y

we have to prove its value equal to

-( x^2 - y^2 )( y^2 - z^2 ) (z^2 - x^2 )
 
Without values for x, y, and z, I don't see any way of obtaining the "value" of the given determinant. All you can do is find an expression for it. Sorry.

Eliz.
 
Hello, nisar_cck!

Find the value of determinant by using properties.

. . . .x<sup>3</sup> . . .y<sup>3</sup> . . .z<sup>3</sup>

. . . .x<sup>2</sup> . . .y<sup>2</sup> . . .z<sup>2</sup>

. . .y+z . .x+z . .x+y

We have to prove its value equal to: .- (x<sup>2</sup> - y<sup>2</sup>)(y<sup>2</sup> - z<sup>2</sup>) (z<sup>2</sup> - x<sup>2</sup>)
.
I have no idea what "properties" we're supposed to use . . .

Did you expand the determinant?

. . x<sup>3</sup>·[y<sup>2</sup>(x+y) - z<sup>2</sup>(x+z)] - y<sup>3</sup>·[x<sup>2</sup>(x+y) - z<sup>2</sup>(y+z)] + z<sup>3</sup>·[x<sup>2</sup>(x+z) - y<sup>2</sup>(y+z)]

Evidently, this simplifies to that product.
 
Hello again, nisar_cck!

I expanded this monster:

. . x<sup>3</sup>·[y<sup>2</sup>(x+y) - z<sup>2</sup>(x+z)] - y<sup>3</sup>·[x<sup>2</sup>(x+y) - z<sup>2</sup>(y+z)] + z<sup>3</sup>·[x<sup>2</sup>(x+z) - y<sup>2</sup>(y+z)]

and many of the terms dropped out, leaving us with:

. . . . x<sup>4</sup>y<sup>2</sup> - x<sup>4</sup>z<sup>2</sup> - x<sup>2</sup>y<sup>4</sup> + x<sup>2</sup>z<sup>4</sup> + y<sup>4</sup>z<sup>2</sup> - y<sup>2</sup>z<sup>4</sup>

. . = .x<sup>4</sup>(y<sup>2</sup> - z<sup>2</sup>) - x<sup>2</sup>(y<sup>4</sup> - z<sup>4</sup>) + y<sup>2</sup>z<sup>2</sup>(y<sup>2</sup> - z<sup>2</sup>)

. . = .x<sup>4</sup>(y<sup>2</sup> - z<sup>2</sup>) - x<sup>2</sup>(y<sup>2</sup> - z<sup>2</sup>)(y<sup>2</sup> + z<sup>2</sup>) + y<sup>2</sup>z<sup>2</sup>(y<sup>2</sup> - z<sup>2</sup>)

. . = .(y<sup>2</sup> - z<sup>2</sup>) [x<sup>4</sup> - x<sup>2</sup>(y<sup>2</sup> + z<sup>2</sup>) + y<sup>2</sup>z<sup>2</sup>]

. . = .(y<sup>2</sup> - z<sup>2</sup>) (x<sup>4</sup> - x<sup>2</sup>y<sup>2</sup> - x<sup>2</sup>z<sup>2</sup> + y<sup>2</sup>z<sup>2</sup>)

. . = .(y<sup>2</sup> - z<sup>2</sup>) (x<sup>4</sup> - x<sup>2</sup>z<sup>2</sup> - x<sup>2</sup>y<sup>2</sup> + y<sup>2</sup>z<sup>2</sup>)

. . = .(y<sup>2</sup> - z<sup>2</sup>) [x<sup>2</sup>(x<sup>2</sup> - z<sup>2</sup>) - y<sup>2</sup>(x<sup>2</sup> - z<sup>2</sup>)]

. . = .(y<sup>2</sup> - z<sup>2</sup>) (x<sup>2</sup> - z<sup>2</sup>) (x<sup>2</sup> - y<sup>2</sup>)

. . = .- (x<sup>2</sup> - y<sup>2</sup>) (y<sup>2</sup> - z<sup>2</sup>) (z<sup>2</sup> - x<sup>2</sup>) . . . Whew!
 
Top