\(\displaystyle \int_{0}^{3}\frac{x^3dx}{8x^4+9\pi}\)
\(\displaystyle Let \ u \ + \ 8x^4+9\pi, \ then \ \frac{du}{32} \ = \ x^3dx\)
\(\displaystyle Hence, \ we \ have \ \frac{1}{32}\int_{9\pi}^{648+9\pi}\frac{du}{u} \ = \ \frac{1}{32}\bigg[ln|u|\bigg]_{9\pi}^{648+9\pi}\)
\(\displaystyle = \ \frac{1}{32}[ln(648+9\pi)-ln(9\pi)] \ = \ \frac{1}{32}\bigg[ln\frac{648+9\pi}{9\pi}\bigg]\)
\(\displaystyle =\frac{1}{32}\bigg[ln\frac{9(72+\pi)}{9\pi}\bigg] \ = \ ln\bigg[\frac{72+\pi}{\pi}\bigg]^{1/32} \ \dot= \ .099207635934\)