P(A[sub:rjef0grk]1[/sub:rjef0grk]) = .12
P(A[sub:rjef0grk]2[/sub:rjef0grk]) = .07
P(A[sub:rjef0grk]3[/sub:rjef0grk]) = .05
P(A[sub:rjef0grk]1[/sub:rjef0grk] U A[sub:rjef0grk]2[/sub:rjef0grk]) = .13
P(A[sub:rjef0grk]1[/sub:rjef0grk] U A[sub:rjef0grk]3[/sub:rjef0grk]) = .14
P(A[sub:rjef0grk]2[/sub:rjef0grk] U A[sub:rjef0grk]3[/sub:rjef0grk]) = .10
P(A[sub:rjef0grk]1[/sub:rjef0grk] AND A[sub:rjef0grk]2[/sub:rjef0grk] AND A[sub:rjef0grk]3[/sub:rjef0grk]) = .01 (Don't know how to type the and symbol, which is an upside down U)
(a) What is the probability that the system has both type 1 and type 2 defects?
P(A[sub:rjef0grk]1[/sub:rjef0grk] AND A[sub:rjef0grk]2[/sub:rjef0grk]) = P(A[sub:rjef0grk]1[/sub:rjef0grk]) + P(A[sub:rjef0grk]2[/sub:rjef0grk]) - P(A[sub:rjef0grk]1[/sub:rjef0grk] U A[sub:rjef0grk]2[/sub:rjef0grk]) = .12 + .07 - .13 = .06
(b) What is the probability that the system has both type 1 and type 2 defects but not a type 3 defect?
P(A[sub:rjef0grk]1[/sub:rjef0grk] AND A[sub:rjef0grk]2[/sub:rjef0grk] AND A'[sub:rjef0grk]3[/sub:rjef0grk]) = P(A[sub:rjef0grk]1[/sub:rjef0grk] AND A[sub:rjef0grk]2[/sub:rjef0grk]) - P(A[sub:rjef0grk]1[/sub:rjef0grk] AND A[sub:rjef0grk]2[/sub:rjef0grk] AND A[sub:rjef0grk]3[/sub:rjef0grk]) = .06 - .01 = .05
(c) What is the probability that the system has at most two of these defects?
???
Do the first two look right? Also, I'm stuck on part C, if someone could help me get back on track, I'd appreciate it.
P(A[sub:rjef0grk]2[/sub:rjef0grk]) = .07
P(A[sub:rjef0grk]3[/sub:rjef0grk]) = .05
P(A[sub:rjef0grk]1[/sub:rjef0grk] U A[sub:rjef0grk]2[/sub:rjef0grk]) = .13
P(A[sub:rjef0grk]1[/sub:rjef0grk] U A[sub:rjef0grk]3[/sub:rjef0grk]) = .14
P(A[sub:rjef0grk]2[/sub:rjef0grk] U A[sub:rjef0grk]3[/sub:rjef0grk]) = .10
P(A[sub:rjef0grk]1[/sub:rjef0grk] AND A[sub:rjef0grk]2[/sub:rjef0grk] AND A[sub:rjef0grk]3[/sub:rjef0grk]) = .01 (Don't know how to type the and symbol, which is an upside down U)
(a) What is the probability that the system has both type 1 and type 2 defects?
P(A[sub:rjef0grk]1[/sub:rjef0grk] AND A[sub:rjef0grk]2[/sub:rjef0grk]) = P(A[sub:rjef0grk]1[/sub:rjef0grk]) + P(A[sub:rjef0grk]2[/sub:rjef0grk]) - P(A[sub:rjef0grk]1[/sub:rjef0grk] U A[sub:rjef0grk]2[/sub:rjef0grk]) = .12 + .07 - .13 = .06
(b) What is the probability that the system has both type 1 and type 2 defects but not a type 3 defect?
P(A[sub:rjef0grk]1[/sub:rjef0grk] AND A[sub:rjef0grk]2[/sub:rjef0grk] AND A'[sub:rjef0grk]3[/sub:rjef0grk]) = P(A[sub:rjef0grk]1[/sub:rjef0grk] AND A[sub:rjef0grk]2[/sub:rjef0grk]) - P(A[sub:rjef0grk]1[/sub:rjef0grk] AND A[sub:rjef0grk]2[/sub:rjef0grk] AND A[sub:rjef0grk]3[/sub:rjef0grk]) = .06 - .01 = .05
(c) What is the probability that the system has at most two of these defects?
???
Do the first two look right? Also, I'm stuck on part C, if someone could help me get back on track, I'd appreciate it.