Probability question: please help!

scresthop123

New member
Joined
Feb 16, 2010
Messages
7
IF A and B are independent events, show A complement (not A) and B complement (not B) are also independent.

Thanks.
 
Hello, scresthop123!

If A\displaystyle A and B\displaystyle B are independent events,
show that: A\displaystyle A' and B\displaystyle B' are also independent.

\(\displaystyle \text{Since }A\text{ and }B\text{ are independent: }\:p(A \cap B) \:=\:p(A)\cdot P(B)\)


Formula:   P(AB)  =  P(A)+P(B)P(AB)\displaystyle \text{Formula: }\;P(A \cup B) \;=\; P(A) + P(B) - P(A \cap B)

\(\displaystyle \text{We have: }\:p(A \cup B) \;=\;P(A) + P(B) - P(A)\cdot P(B)\) .[1]


\(\displaystyle \text{The complement of }A \cup B\text{ is: }\:(A \cup B)' \:=\:A' \cap B'\)

\(\displaystyle \text{Hence: }\:p(A'\cap B')\,\text{ is the "complement" of [1].}\)

. . P(AB)  =  1[P(A)+P(B)P(A)P(B)]\displaystyle P(A' \cap B') \;=\;1 - \bigg[P(A) + P(B) - P(A)\cdot P(B)\bigg]

. . . . . . . . . . =  1P(A)P(B)+P(A)P(B)\displaystyle =\;1 - P(A) - P(B) + P(A)\cdot P(B)

. . . . . . . . . . =  [1P(A)]P(B)[1P(A)]\displaystyle =\; \bigg[1 - P(A)\bigg] \:-\: P(B)\bigg[1 - P(A)\bigg]

. . . . . . . . . . =  [1P(A)][1P(B)]\displaystyle =\; \bigg[1-P(A)]\cdot\bigg[1-P(B)\bigg]

. . . . . . . . . . =P(A)P(B)\displaystyle =\qquad P(A')\cdot P(B')


\(\displaystyle \text{We have shown that: }\:p(A' \cap B') \;=\;P(A')\cdot P(B')\)

Therefore, A and B are independent.\displaystyle \text{Therefore, }A'\text{ and }B'\text{ are independent.}

 
Top