I posted this problem a few years ago.
As I recall, no one supplied a satisfactory explanation.
Problem
There are two balls in a covered box.
Each ball is either black or white.
Without looking or sampling,
. . determine the color(s) of the balls.
Solution
There are three equally likely cases:
. . \(\displaystyle \boxed{\bullet\;\bullet} \quad \boxed{\bullet\;\circ}\quad \boxed{\circ\;\circ}\)
Add one black ball to the box.
. . \(\displaystyle \boxed{\bullet\;\bullet\;\bullet} \quad \boxed{\bullet\;\bullet\;\circ} \quad \boxed{\bullet\;\circ\;\circ}\)
Consider the probability of drawing a black ball.
. . \(\displaystyle P(\text{black}) \;=\;\tfrac{1}{3}(1) + \tfrac{1}{3}\left(\tfrac{2}{3}\right) + \tfrac{1}{3}\left(\tfrac{1}{3}\right) \;=\;\tfrac{2}{3}\)
\(\displaystyle \text{Since }P(\text{black}) =\tfrac{2}{3}\text{, the box }must\text{ contain }\begin{Bmatrix}\text{2 black} \\ \text{1 white} \end{Bmatrix}\)
\(\displaystyle \text{Therefore, before the black ball was added,}\)
. . . . . . . . .\(\displaystyle \text{the box must have contained: }\:\begin{Bmatrix}\text{1 black} \\ \text{1 white} \end{Bmatrix}\)