Probability of union event

chengeto

New member
Joined
Feb 28, 2009
Messages
49
P(BC)=P(1P(B))+P(C)P(BC)\displaystyle P(B \prime \cup C)= P(1-P(B)) + P(C) - P ( B \cap C)


I am in the right direction trying to find the probability of compliment B union C ?
 
P(BC)=P(B)+P(C)P(BC)=1P(B)+P(C)[P(C)P(BC)]=1P(B)+P(BC)\displaystyle \begin{array}{rcl} {P(B' \cup C)} & = & {P(B') + P(C) - P(B' \cap C)} \\ {} & = & {1 - P(B) + P(C) - \left[ {P(C) - P(B \cap C)} \right]} \\ {} & = & {1 - P(B) + P(B \cap C)} \\ \end{array}
 
Top