a_chak09@hotmail.com
New member
- Joined
- Feb 26, 2016
- Messages
- 1
Suppose X has density function x^(-1/2)/2 for 0 < x < 1 and 0 otherwise. Find:
(a) the distribution function
(b) P(X > 3/4)
(c) P(1/9 < X > 1/4)
Attempted Answer:
(a) Distribution Function:
. . .\(\displaystyle \dfrac{1}{2}\,\)\(\displaystyle \displaystyle \int\, x^{-1/2}\, dx\, =\, \sqrt{\strut x\,}\)
Answer: F(X) = x^(1/2) <== CORRECT
(b) Probability:
. . .\(\displaystyle \displaystyle \begin{align}P\,\left(X\, >\, \dfrac{3}{4}\right)\, &=\, \int_{3/4}^1\, x^{-1/2}\, dx
\\ \\ &=\, \sqrt{\strut x\,}\, \bigg|_{3/4}^1
\\ \\ &=\, 1\, -\, \sqrt{\strut \dfrac{3}{4}\,} \end{align}\)
Answer: 1 - 1/(3^(1/2)). .<== WRONG
(Answer: 0.13)
(c) Probability:
. . .\(\displaystyle |displaystyle \begin{align} P\, \left(\dfrac{1}{9}\, <\, X\, <\, \dfrac{1}{4}\right)\, &=\, \int_0^{1/4}\, \dfrac{x^{-1/2}}{2}\, dx\, -\, \int_0^{1/9}\, \dfrac{x^{-1/2}}{2}\, dx
\\ \\ &=\, \sqrt{\strut x\,}\,\bigg|_0^{1/4}\, -\, \sqrt{\strut x\,}\,\bigg|_0^{1/9}
\\ \\ &=\, \sqrt{\strut \dfrac{1}{4}\,}\, -\, \sqrt{\strut \dfrac{1}{9}\,}
\\ \\ &=\, \dfrac{1}{6} \end{align}\) Answer: 1/6 . .<== CORRECT
I HAVE NO IDEAS WHAT B IS!!
(a) the distribution function
(b) P(X > 3/4)
(c) P(1/9 < X > 1/4)
Attempted Answer:
(a) Distribution Function:
. . .\(\displaystyle \dfrac{1}{2}\,\)\(\displaystyle \displaystyle \int\, x^{-1/2}\, dx\, =\, \sqrt{\strut x\,}\)
Answer: F(X) = x^(1/2) <== CORRECT
(b) Probability:
. . .\(\displaystyle \displaystyle \begin{align}P\,\left(X\, >\, \dfrac{3}{4}\right)\, &=\, \int_{3/4}^1\, x^{-1/2}\, dx
\\ \\ &=\, \sqrt{\strut x\,}\, \bigg|_{3/4}^1
\\ \\ &=\, 1\, -\, \sqrt{\strut \dfrac{3}{4}\,} \end{align}\)
Answer: 1 - 1/(3^(1/2)). .<== WRONG
(Answer: 0.13)
(c) Probability:
. . .\(\displaystyle |displaystyle \begin{align} P\, \left(\dfrac{1}{9}\, <\, X\, <\, \dfrac{1}{4}\right)\, &=\, \int_0^{1/4}\, \dfrac{x^{-1/2}}{2}\, dx\, -\, \int_0^{1/9}\, \dfrac{x^{-1/2}}{2}\, dx
\\ \\ &=\, \sqrt{\strut x\,}\,\bigg|_0^{1/4}\, -\, \sqrt{\strut x\,}\,\bigg|_0^{1/9}
\\ \\ &=\, \sqrt{\strut \dfrac{1}{4}\,}\, -\, \sqrt{\strut \dfrac{1}{9}\,}
\\ \\ &=\, \dfrac{1}{6} \end{align}\) Answer: 1/6 . .<== CORRECT
I HAVE NO IDEAS WHAT B IS!!
Attachments
Last edited by a moderator: