\(\displaystyle \frac{dP}{dt} \ = \ kP\bigg(1-\frac{P}{K}\bigg), \ common \ generic \ logistic \ model \ with \ k \ = \ annual \ growth \ rate\)
\(\displaystyle and \ K \ equals \ carrying \ capacity.\)
\(\displaystyle Hence, \ \int\frac{dP}{P\bigg(1-\frac{P}{K}\bigg)} \ = \ \int kdt\)
\(\displaystyle -ln\bigg|\frac{P-K}{P}\bigg| \ = \ kt+C\)
\(\displaystyle ln\bigg|\frac{P-K}{P}\bigg| \ = \ -kt-C\)
\(\displaystyle \bigg|\frac{P-K}{P}\bigg| \ = \ (e^{-kt})(e^{-C})\)
\(\displaystyle \frac{P-K}{P} \ = \ Ae^{-kt}, \ A \ = \ \pm \ e^{-C}\)
\(\displaystyle 1-\frac{K}{P} \ = \ Ae^{-kt}\)
\(\displaystyle \frac{K}{P} \ = \ 1-Ae^{-kt}\)
\(\displaystyle \frac{P}{K} \ = \ \frac{1}{1-Ae^{-kt}}\)
\(\displaystyle Hence, \ P(t) \ = \ \frac{K}{1-Ae^{-kt}}\)
\(\displaystyle Now \ K \ = \ 20 \ and \ k \ = \ .042, \ ergo \ P(t) \ = \ \frac{20}{1-Ae^{-.042t}}\)
\(\displaystyle Let \ 1960 \ = \ 0, \ then \ P(0) \ = \ 4 \ = \ \frac{20}{1-A}, \ \implies \ A \ = \ -4\)
\(\displaystyle Hence, \ P(t) \ = \ \frac{20}{1+4e^{-.042t}}, \ is \ this \ what \ you \ wanted?\)
\(\displaystyle Note: \ It \ will \ take \ about \ 23 \ years \ (1983) \ to \ reach \ a \ population \ of \ 8 \ million\)
\(\displaystyle and \ the \ \lim_{t\to\infty} P(t) \ = \ 20 \ million, \ the \ carrying \ capacity.\)