predicting current growth rate w/ a logistical model

BigBuck01

New member
Joined
Jun 3, 2010
Messages
9
Had a question in class today that I could use a little help with! Where do I start??? here's the question!

- Use the 1960's annual growth rate of 4.2% and population of 4 million to predict the current growth w/ a logistical model. Current country population is 8 million. Carrying capacity is 20 million.
 
BigBuck01 said:
Had a question in class today that I could use a little help with! Where do I start??? here's the question!

- Use the 1960's annual growth rate of 4.2% and population of 4 million to predict the current growth w/ a logistical model. Current country population is 8 million. Carrying capacity is 20 million.

Start with definitions - How is logistic model defined?

Then define your unknowns - dependant and independant variables.

Then tell us excatly where you are stuck ...
 
Hello, BigBuck01!

Please check the wording of the problem.
As stated, it doesn't make sense.


Use the 1960's annual growth rate of 4.2% and population of 4 million
. . to predict the current growth with a logistical model.
Current country population is 8 million. .??
Carrying capacity is 20 million. .
What does this mean?

The growth formula is:   P  =  Po(1+r)n\displaystyle \text{The growth formula is: }\;P \;=\;P_o(1+r)^n

. . where:   {P=present populationPo=initial populationr=annual growth raten=number of years}\displaystyle \text{where: }\;\begin{Bmatrix}P &=& \text{present population} \\ P_o &=& \text{initial population} \\ r &=& \text{annual growth rate} \\ n &=& \text{number of years} \end{Bmatrix}


We are given: Po=4, ⁣000, ⁣000r=0.042\displaystyle \text{We are given: }\:\begin{array}{ccc}P_o &=& 4,\!000,\!000 \\ r &=& 0.042 \\ \end{array}

So we have:   P  =  4, ⁣000, ⁣000(1.042)n\displaystyle \text{So we have: }\;P \;=\;4,\!000,\!000(1.042)^n


We are told that the current population (now) is 8 million.\displaystyle \text{We are told that the current population (now) is 8 million.}
. . When is "now"?\displaystyle \text{When is "now"?}

We have: 8, ⁣000, ⁣000=4, ⁣000, ⁣000(1.042)n1.042n=2\displaystyle \text{We have: }\:8,\!000,\!000 \:=\:4,\!000,\!000(1.042)^n \quad\Rightarrow\quad 1.042^n \:=\:2

Take logs:   ln(1.042n)=ln2nln1.042=ln2\displaystyle \text{Take logs: }\;\ln(1.042^n) \:=\:\ln 2 \quad\Rightarrow\quad n\ln1.042 \:=\:\ln 2

. . n  =  ln2ln1.042  =  16.84677015    17 years\displaystyle n \;=\;\frac{\ln2}{\ln1.042} \;=\;16.84677015 \;\approx\;17\text{ years}


Evidently "now" is somewhere in the late 1970’s or early 1980’s.\displaystyle \text{Evidently "now" is somewhere in the late 1970's or early 1980's.}

So what is the question?\displaystyle \text{So what is the question?}

 
Current country population is 8 million.

What is current? 2010, 2000, 1990, etc.

The population in 1960 was 4 million, in what year had the population grown to 8 million?

If you got this problem out of a book, what is it latest copywrite? That would be current.
 
dPdt = kP(1PK), common generic logistic model with k = annual growth rate\displaystyle \frac{dP}{dt} \ = \ kP\bigg(1-\frac{P}{K}\bigg), \ common \ generic \ logistic \ model \ with \ k \ = \ annual \ growth \ rate

and K equals carrying capacity.\displaystyle and \ K \ equals \ carrying \ capacity.

Hence, dPP(1PK) = kdt\displaystyle Hence, \ \int\frac{dP}{P\bigg(1-\frac{P}{K}\bigg)} \ = \ \int kdt

lnPKP = kt+C\displaystyle -ln\bigg|\frac{P-K}{P}\bigg| \ = \ kt+C

lnPKP = ktC\displaystyle ln\bigg|\frac{P-K}{P}\bigg| \ = \ -kt-C

PKP = (ekt)(eC)\displaystyle \bigg|\frac{P-K}{P}\bigg| \ = \ (e^{-kt})(e^{-C})

PKP = Aekt, A = ± eC\displaystyle \frac{P-K}{P} \ = \ Ae^{-kt}, \ A \ = \ \pm \ e^{-C}

1KP = Aekt\displaystyle 1-\frac{K}{P} \ = \ Ae^{-kt}

KP = 1Aekt\displaystyle \frac{K}{P} \ = \ 1-Ae^{-kt}

PK = 11Aekt\displaystyle \frac{P}{K} \ = \ \frac{1}{1-Ae^{-kt}}

Hence, P(t) = K1Aekt\displaystyle Hence, \ P(t) \ = \ \frac{K}{1-Ae^{-kt}}

Now K = 20 and k = .042, ergo P(t) = 201Ae.042t\displaystyle Now \ K \ = \ 20 \ and \ k \ = \ .042, \ ergo \ P(t) \ = \ \frac{20}{1-Ae^{-.042t}}

Let 1960 = 0, then P(0) = 4 = 201A,      A = 4\displaystyle Let \ 1960 \ = \ 0, \ then \ P(0) \ = \ 4 \ = \ \frac{20}{1-A}, \ \implies \ A \ = \ -4

Hence, P(t) = 201+4e.042t, is this what you wanted?\displaystyle Hence, \ P(t) \ = \ \frac{20}{1+4e^{-.042t}}, \ is \ this \ what \ you \ wanted?

Note: It will take about 23 years (1983) to reach a population of 8 million\displaystyle Note: \ It \ will \ take \ about \ 23 \ years \ (1983) \ to \ reach \ a \ population \ of \ 8 \ million

and the limtP(t) = 20 million, the carrying capacity.\displaystyle and \ the \ \lim_{t\to\infty} P(t) \ = \ 20 \ million, \ the \ carrying \ capacity.
 
Top