Given: 1) \forall x[x=x] 2)[P(0)\wedge\forall x(P(x)\implies P(x'))]\implies\forall x(P(x)) Then prove in the predicate calculus: \forall x[(x=0\vee\exists y( x=y')] Here the P((x) is [(x=0\vee\exists y( x=y')] You can consider the above as a...