Precalc Final Help!!

Change both tangent and cotangent to functions of sine and cosine.
Do it and show us what you get.
 
haze said:
Verify the idenity: (1-tanx)(1-cotx)=2-sec x csc x

Since few days gone by:

[1tan(x)][1cot(x)]\displaystyle [1\, - \, \tan(x)]\cdot[1 \, - \cot(x)]

using foil

1+[tan(x)][cot(x)][tan(x)+cot(x)]\displaystyle 1\, + \, [\tan(x)]\cdot[cot(x)] \, - [\tan(x) \, + \, \cot(x)]

1+1[sin(x)cos(x)+cos(x)sin(x)]\displaystyle 1\, + \, 1 \, - [\frac{\sin(x)}{cos(x)} \, + \, \frac{\cos(x)}{\sin(x)}]

2[sin2(x)+cos2(x)cos(x)sin(x)]\displaystyle 2 \, - [\frac{\sin^2(x) \, + \, \cos^2(x)}{\cos(x) \cdot \sin(x)}]

2[1cos(x)1sin(x)]\displaystyle 2 \, - [\frac{1}{cos(x)} \, \cdot \, \frac{1}{\sin(x)}]

and so on...
 
Top