haze said:
Verify the idenity: (1-tanx)(1-cotx)=2-sec x csc x
Since few days gone by:
\(\displaystyle [1\, - \, \tan(x)]\cdot[1 \, - \cot(x)]\)
using foil
\(\displaystyle 1\, + \, [\tan(x)]\cdot[cot(x)] \, - [\tan(x) \, + \, \cot(x)]\)
\(\displaystyle 1\, + \, 1 \, - [\frac{\sin(x)}{cos(x)} \, + \, \frac{\cos(x)}{\sin(x)}]\)
\(\displaystyle 2 \, - [\frac{\sin^2(x) \, + \, \cos^2(x)}{\cos(x) \cdot \sin(x)}]\)
\(\displaystyle 2 \, - [\frac{1}{cos(x)} \, \cdot \, \frac{1}{\sin(x)}]\)
and so on...