PreCal Trig Identities Project. Working with 1 side.

dkenon

New member
Joined
Mar 10, 2009
Messages
1
1.cos^2(theta)+tan^2(theta)cos^2(theta)=1
2.sec^2(theta)+tan^2(theta)sec^2(theta)=sec^4(theta)
3.sin(theta)(csc(theta)-sin(theta))=cos^2(theta)
 
#1 -- \(\displaystyle \tan^2\theta = \frac{\sin^2\theta}{\cos^2\theta}\). Make the substitution and take it from there.

#2 -- Factor out the sec[sup:2i89nsav]2[/sup:2i89nsav]? and go from there.

For any more help, please show your work.
 
#3 sin ø (csc ø - sin ø) = cos^2 ø

sin ø (csc ø - sin ø) = 1 - sin^2 ø

The rest is easy.
 
Hello, dkenon!

\(\displaystyle 1)\;\;\cos^2\!\theta +\tan^2\!\theta\cos^2\!\theta \:=\:1\)

\(\displaystyle \text{Factor: }\:\cos^2\!\theta\underbrace{\left(1 + \tan^2\!\theta\right)}_{\text{This is }\sec^2\!\theta} \;=\;\cos^2\!\theta \cdot\sec^2\!\theta \;=\;(\underbrace{\cos\theta\sec\theta}_{\text{This is 1}})^2 \;=\;1^2 \;=\;1\)



\(\displaystyle 2)\;\;\sec^2\!\theta + \tan^2\!\theta\sec^2\!\theta \:=\sec^4\!\theta\)

\(\displaystyle \text{As Loren suggested, factor: }\:\sec^2\!\theta\underbrace{(1 + \tan^2\!\theta)}_{\text{This is }\sec^2\!\theta} \:=\:\sec^2\!\theta\cdot\sec^2\!\theta \;=\;\sec^4\!\theta\)



\(\displaystyle 3)\;\;\sin\theta(\csc\theta-\sin\theta) \:=\:\cos^2\!\theta\)

\(\displaystyle \text{The left side is: }\:\underbrace{\sin\theta\csc\theta}_{\text{This is 1}} - \sin^2\!\theta \;=\;\underbrace{1 - \sin^2\!\theta}_{\text{This is }\cos^2\!\theta} \;=\;\cos^2\!\theta\)

 
Top