Here's another way to think about it, involving what exponents mean for integer powers. Let's consider a few examples of dividing various powers of \(x\):
\(\displaystyle \frac{x^5}{x^3} = \frac{\cancel{x} \cdot \cancel{x} \cdot \cancel{x} \cdot x \cdot x}{\cancel{x} \cdot \cancel{x} \cdot \cancel{x}} = x \cdot x = x^2\)
\(\displaystyle \frac{x^6}{x^2} = \frac{\cancel{x} \cdot \cancel{x} \cdot x \cdot x \cdot x \cdot x}{\cancel{x} \cdot \cancel{x}} = x \cdot x \cdot x \cdot x = x^4\)
\(\displaystyle \frac{x^3}{x^4} = \frac{\cancel{x} \cdot \cancel{x} \cdot \cancel{x}}{\cancel{x} \cdot \cancel{x} \cdot \cancel{x} \cdot x} = \frac{1}{x} = x^{-1}\)
These seem to suggest that we have the property that \(\displaystyle \frac{x^a}{x^b} = x^{a-b}\). And, indeed, this is
one of the rules of exponents. But now the logical question becomes: What if the powers were the same?
\(\displaystyle \frac{x^2}{x^2} = \frac{\cancel{x} \cdot \cancel{x}}{\cancel{x} \cdot \cancel{x}} = \frac{1}{1} = 1\)
\(\displaystyle \frac{x^3}{x^3} = \frac{\cancel{x} \cdot \cancel{x} \cdot \cancel{x}}{\cancel{x} \cdot \cancel{x} \cdot \cancel{x}} = \frac{1}{1} = 1\)
The rule we just derived holds for any power, we know that \(\displaystyle \frac{x^n}{x^n} = x^{n-n} = x^0\) for all \(n\) and all non-zero \(x\). Then if we put the two together, that tells us that \(\displaystyle x^0 = 1\) for all non-zero \(x\).