Hello, ArcainineFalls531!
I had an promising idea . . . but I ran into a wall.
\(\displaystyle \;\;\)Maybe someone can see how it can be continued.
Find power series representations of \(\displaystyle \sin(x)\) and \(\displaystyle \cos(x)\) without using Taylor series methods.
Hint: What is the relationship between \(\displaystyle f(x)\) and \(\displaystyle f"(x)\)?
For both functions: \(\displaystyle \,f''(x)\:=\:-f(x)\)
Let the function be: \(\displaystyle \,f(x)\:=\:a_o\,+\,a_1x\,+\,a_2x^2\,+\,a_3x^3\,+\,a_4x^4\,+\,a_5x^5\,+\,\cdots\)
Then: \(\displaystyle \,f''(x)\:=\;2a_2\,+\,6a_3x\,+\,12a_4x^2\,+\,20a_5x^3\,+\,30a_6x^4\,+\,42a_7x^5\,+\,\cdots\)
Setting \(\displaystyle f(x)\,=\,-f''(x)\) and equating coefficients, we get:
\(\displaystyle \;\;\;a_o\,=\,-2a_2\;\;\Rightarrow\;\;a_2\,=\,-\frac{1}{2!}a_0\)
\(\displaystyle \;\;\;a_1\,=\,-6a_3\;\;\Rightarrow\;\;a_3\,=\,-\frac{1}{3!}a_2\)
\(\displaystyle \;\;\;a_2\,=\,-12a_4\;\;\Rightarrow\;\;a_4\,=\,-\frac{1}{12}a_2\,=\,\frac{1}{4!}a_o\)
\(\displaystyle \;\;\;a_3\,=\,-20a_5\;\;\Rightarrow\;\;a_5\,=\,-\frac{1}{20}a_3\,=\,\frac{1}{5!}a_1\)
\(\displaystyle \;\;\;a_4\,=\,-30a_6\;\;\Rightarrow\;\;a_6\,=\,-\frac{1}{30}a_4\,=\,-\frac{1}{6!}a_o\)
\(\displaystyle \;\;\;a_5\,=\,-42a_7\;\;\Rightarrow\;\;a_7\,=\,-\frac{1}{42}a_5\,=\,-\frac{1}{7!}a_1\)
We seem to have
two sequences of coefficients:
\(\displaystyle \;\;\;a_o,\;\)-\(\displaystyle \frac{a_o}{2!},\;\frac{a_o}{4!}\,\;\)-\(\displaystyle \frac{a_o}{6!},\;\cdots\)
\(\displaystyle \;\;\;a_1,\;\)-\(\displaystyle \frac{a_1}{3!},\;\frac{a_1}{5!},\;\)-\(\displaystyle \frac{a_1}{7!},\;\cdots\)
which follow the patterns for \(\displaystyle \sin x\) and \(\displaystyle \cos x\) very nicely.
But now what?
\(\displaystyle \;\;\)How do I "separate" them and claim that the odd terms comprise the sine series?
\(\displaystyle \;\;\)How do I determine that \(\displaystyle a_o\,=\,a_1\,=\,1\) ?