Polynomial long division

euonym

New member
Joined
Nov 20, 2010
Messages
2
Hi,

I need to find the anti-derivative of this function:

x32x+1(x23x+2)(x1)dx\displaystyle \int\frac{x^{3}-2x+1}{(x^{2}-3x+2)(x-1)}dx

My problem lies in how to approach the polynomial division. Any ideas?
 
First, if you factor the top and bottom completely, an x-1 cancels and you're left with:

x2+x1(x2)(x1)dx\displaystyle \int\frac{x^{2}+x-1}{(x-2)(x-1)}dx

Add and subtract x23x+2\displaystyle x^{2}-3x+2:

x2+x1(x23x+2)+(x23x+2)x23x+2=x2+x1(x23x+2)x23x+2+x23x+2x23x+2=4x3(x2)(x1)+1\displaystyle \frac{x^{2}+x-1-(x^{2}-3x+2)+(x^{2}-3x+2)}{x^{2}-3x+2}=\frac{x^{2}+x-1-(x^{2}-3x+2)}{x^{2}-3x+2}+\frac{x^{2}-3x+2}{x^{2}-3x+2}=\frac{4x-3}{(x-2)(x-1)}+1

Now, you can use partial fractions.

Ax2+Bx1=4x3\displaystyle \frac{A}{x-2}+\frac{B}{x-1}=4x-3

OR do it without partial fractions:

add and subtract x-2:

4x3+(x2)(x2)(x2)(x1)=5(x1)(x2)(x2)(x1)=5x21x1\displaystyle \frac{4x-3+(x-2)-(x-2)}{(x-2)(x-1)}=\frac{5(x-1)-(x-2)}{(x-2)(x-1)}=\frac{5}{x-2}-\frac{1}{x-1}

Don't forget the 1. It can be integrated separately.
 
Top