Polar coordinates: find all values of 'a' so (a, pi/18) is

leilsilver

New member
Joined
Jun 11, 2006
Messages
23
Find all the values of a, so that the point whose polar coordinates are (a,pie/18) is 4 away from teh point whose polar coordinates are (2a,4pie/18).

pie= 3.14 just so that we're all clear on that...
 
just so we're clear on this, pie is something you eat ... pi is the Greek letter that represents the value of the ratio of the circumference of a circle to its diameter.

(a, pi/18) in rectangular coordinates is (a*cos(pi/18), a*sin(pi/18))

(2a, 4pi/18) in rectangular coordinates is (2a*cos(2pi/9), 2a*sin(2pi/9))

using the distance formula for rectangular coordinates ...

16 = [2a*cos(2pi/9) - a*cos(pi/18)]^2 + [2a*sin(2pi/9) - a*sin(pi/18)]^2

16 = 4a^2*cos^2(2pi/9) - 4a^2*cos(2pi/9)cos(pi/18) + a^2*cos^2(pi/18) +
4a^2*sin^2(2pi/9) - 4a^2*sin(2pi/9)sin(pi/18) + a^2*sin^2(pi/18)

16 = 5a^2 - 4a^2[cos(2pi/9)cos(pi/18) + sin(2pi/9)sin(pi/19)]

16 = 5a^2 - 4a^2*cos(2pi/9 - pi/18)

16 = 5a^2 - 4a^2*cos(pi/6)

16 = 5a^2 - 2sqrt(3)*a^2

16 = a^2[5 - 2sqrt(3)]

a = +/- 4/sqrt[5 - 2sqrt(3)]
 
Top