Please need trig help

samantha ryan

New member
Joined
Nov 7, 2005
Messages
4
1. complete the identity: x=theta
sin (2x)tan x + cos (2x)=?

2. Establish the identity: x=theta
csc (2x) - cot (2x)= tan x
 
Hello, samantha!

You're expected to know several identities . . . among them are:

. . . sin(2x)=2sin(x)cos(x)\displaystyle \sin(2x)\:=\:2\cdot\sin(x)\cdot\cos(x)

. . . cos(2x)=12sin2(x)        1cos(2x)=2sin2(x)\displaystyle \cos(2x)\:=\:1\,-\,2\sin^2(x)\;\;\Rightarrow\;\;1\,-\,\cos(2x)\:=\:2\cdot\sin^2(x)


1. Complete the identity: . sin(2x)tan(x)+cos(2x)=  ?\displaystyle \sin(2x)\tan(x)\,+\,\cos(2x)\:=\;?
We have: .[2sin(x)cos(x)][sin(x)cos(x)]+[12sin2(x)]\displaystyle [2\cdot\sin(x)\cdot\cos(x)]\cdot\left[\frac{\sin(x)}{\cos(x)}\right]\,+\,[1\,-\,2\cdot\sin^2(x)]

. . . =  2sin2(x)+12sin2(x)  =  1\displaystyle =\;2\cdot\sin^2(x)\,+\,1\,-\,2\cdot\sin^2(x)\;=\;1

2. Establish the identity: .csc(2x)cot(2x)=tan(x)\displaystyle \csc(2x)\,-\,\cot(2x)\:=\:\tan(x)
The left side is: .1sin(2x)cos(2x)sin(2x)  =  1cos(2x)sin(2x)  =  2sin2(x)2sin(x)cos(x)  =  sin(x)cos(x)  =  tan(x)\displaystyle \frac{1}{\sin(2x)}\,-\,\frac{\cos(2x)}{\sin(2x)}\;=\;\frac{1\,-\,\cos(2x)}{\sin(2x)}\;=\;\frac{2\cdot\sin^2(x)}{2\cdot\sin(x)\cdot\cos(x)}\;=\;\frac{\sin(x)}{\cos(x)}\;=\;\tan(x)
 
Hi Soroban,

THANK YOU! THANK YOU! THANK YOU! now i understand it better! thank you again soooooooo much!
 
Top