please help

along parabola y=x2\displaystyle y=x^{2}

F(x,y)=2xy2i+2(x2y+y)j\displaystyle F(x,y)=2xy^{2}i+2(x^{2}y+y)j

Let x=t be the parameter. Then, the path C:

x=t,   y=t2,   (0t2)\displaystyle x=t, \;\ y=t^{2}, \;\ (0\leq t \leq 2)

CAdr=C(2xy2i+2(x2y+y)j)(dxi+dyj)\displaystyle \int_{C}A \cdot dr=\int_{C}\left(2xy^{2}\cdot i+2(x^{2}y+y)j\right)\cdot (dx\cdot i+dy\cdot j)

=02(2t5+2t2(t2+1)(2t))dt\displaystyle =\int_{0}^{2}\left(2t^{5}+2t^{2}(t^{2}+1)(2t)\right)dt
 
Top