Hello.
Please help simplify this integral. Here is the problem statement: Determine the coordinates of the centroid of a quarter of a circle (x[sup:3971tvmd]2[/sup:3971tvmd] + y[sup:3971tvmd]2[/sup:3971tvmd]) = R[sup:3971tvmd]2[/sup:3971tvmd] located in the first quadrant. Its area is ?R[sup:3971tvmd]2[/sup:3971tvmd] /4.
M[sub:3971tvmd]Y[/sub:3971tvmd] = ? x dA, where dA = y dx = ? R[sup:3971tvmd]2[/sup:3971tvmd]- x [sup:3971tvmd]2[/sup:3971tvmd] dx
Here is what I have worked out:
? dM[sub:3971tvmd]Y[/sub:3971tvmd] = ?[sub:3971tvmd]0[/sub:3971tvmd][sup:3971tvmd]R[/sup:3971tvmd] x ? R[sup:3971tvmd]2[/sup:3971tvmd]- x[sup:3971tvmd]2[/sup:3971tvmd] dx
M[sub:3971tvmd]Y[/sub:3971tvmd] = 10x(R[sup:3971tvmd]2[/sup:3971tvmd]- x[sup:3971tvmd]2[/sup:3971tvmd]) [sup:3971tvmd]3/2[/sup:3971tvmd] - 4(R[sup:3971tvmd]2[/sup:3971tvmd]- x[sup:3971tvmd]2[/sup:3971tvmd]) [sup:3971tvmd]5/2[/sup:3971tvmd] /15
The next step in the answer key is:
M[sub:3971tvmd]Y[/sub:3971tvmd] = 1/3(R[sup:3971tvmd]2[/sup:3971tvmd]- x[sup:3971tvmd]2[/sup:3971tvmd]) [sup:3971tvmd]3/2[/sup:3971tvmd]] [sub:3971tvmd]0[/sub:3971tvmd][sup:3971tvmd]R[/sup:3971tvmd]
The answer key gives M[sub:3971tvmd]Y[/sub:3971tvmd] = R[sup:3971tvmd]3[/sup:3971tvmd]/3 as the solution.
What do I need to do next to get from
M[sub:3971tvmd]Y[/sub:3971tvmd] = 10x(R[sup:3971tvmd]2[/sup:3971tvmd]- x[sup:3971tvmd]2[/sup:3971tvmd]) [sup:3971tvmd]3/2[/sup:3971tvmd] - 4(R[sup:3971tvmd]2[/sup:3971tvmd]- x[sup:3971tvmd]2[/sup:3971tvmd]) [sup:3971tvmd]5/2[/sup:3971tvmd] /15 to M[sub:3971tvmd]Y[/sub:3971tvmd] = 1/3(R[sup:3971tvmd]2[/sup:3971tvmd]- x[sup:3971tvmd]2[/sup:3971tvmd]) [sup:3971tvmd]3/2[/sup:3971tvmd]] [sub:3971tvmd]0[/sub:3971tvmd][sup:3971tvmd]R[/sup:3971tvmd]
Thank you for your help.
Please help simplify this integral. Here is the problem statement: Determine the coordinates of the centroid of a quarter of a circle (x[sup:3971tvmd]2[/sup:3971tvmd] + y[sup:3971tvmd]2[/sup:3971tvmd]) = R[sup:3971tvmd]2[/sup:3971tvmd] located in the first quadrant. Its area is ?R[sup:3971tvmd]2[/sup:3971tvmd] /4.
M[sub:3971tvmd]Y[/sub:3971tvmd] = ? x dA, where dA = y dx = ? R[sup:3971tvmd]2[/sup:3971tvmd]- x [sup:3971tvmd]2[/sup:3971tvmd] dx
Here is what I have worked out:
? dM[sub:3971tvmd]Y[/sub:3971tvmd] = ?[sub:3971tvmd]0[/sub:3971tvmd][sup:3971tvmd]R[/sup:3971tvmd] x ? R[sup:3971tvmd]2[/sup:3971tvmd]- x[sup:3971tvmd]2[/sup:3971tvmd] dx
M[sub:3971tvmd]Y[/sub:3971tvmd] = 10x(R[sup:3971tvmd]2[/sup:3971tvmd]- x[sup:3971tvmd]2[/sup:3971tvmd]) [sup:3971tvmd]3/2[/sup:3971tvmd] - 4(R[sup:3971tvmd]2[/sup:3971tvmd]- x[sup:3971tvmd]2[/sup:3971tvmd]) [sup:3971tvmd]5/2[/sup:3971tvmd] /15
The next step in the answer key is:
M[sub:3971tvmd]Y[/sub:3971tvmd] = 1/3(R[sup:3971tvmd]2[/sup:3971tvmd]- x[sup:3971tvmd]2[/sup:3971tvmd]) [sup:3971tvmd]3/2[/sup:3971tvmd]] [sub:3971tvmd]0[/sub:3971tvmd][sup:3971tvmd]R[/sup:3971tvmd]
The answer key gives M[sub:3971tvmd]Y[/sub:3971tvmd] = R[sup:3971tvmd]3[/sup:3971tvmd]/3 as the solution.
What do I need to do next to get from
M[sub:3971tvmd]Y[/sub:3971tvmd] = 10x(R[sup:3971tvmd]2[/sup:3971tvmd]- x[sup:3971tvmd]2[/sup:3971tvmd]) [sup:3971tvmd]3/2[/sup:3971tvmd] - 4(R[sup:3971tvmd]2[/sup:3971tvmd]- x[sup:3971tvmd]2[/sup:3971tvmd]) [sup:3971tvmd]5/2[/sup:3971tvmd] /15 to M[sub:3971tvmd]Y[/sub:3971tvmd] = 1/3(R[sup:3971tvmd]2[/sup:3971tvmd]- x[sup:3971tvmd]2[/sup:3971tvmd]) [sup:3971tvmd]3/2[/sup:3971tvmd]] [sub:3971tvmd]0[/sub:3971tvmd][sup:3971tvmd]R[/sup:3971tvmd]
Thank you for your help.