Differentiate the following two expressions with respect to x
a)
\(\displaystyle \L
y = \frac{{2 - x}}{{\sqrt {x^2 - 1} }}\cr
{\rm [I used the quotient rule] } \cr
{\rm let }u = 2 - x \cr
\frac{{du}}{{dx}} = - 1 \cr
\cr
{\rm let }v = \left( {x^2 - 1} \right)^{ - {\textstyle{1 \over 2}}} \cr
\frac{{dv}}{{dx}} = - \frac{1}{2}\left( {x^2 - 1} \right)^{ - {\textstyle{3 \over 2}}} \left( {2x} \right) \cr
\cr
\frac{{dy}}{{dx}} = \frac{{v\frac{{du}}{{dx}} - u\frac{{dv}}{{dx}}}}{{v^2 }} \cr
= \frac{{ - \left( {x^2 - 1} \right)^{ - {\textstyle{1 \over 2}}} - \left( {2 - x} \right)\left( { - {\textstyle{1 \over 2}}} \right)\left( {x^2 - 1} \right)^{ - {\textstyle{3 \over 2}}} \left( {2x} \right)}}{{\left( {x^2 - 1} \right)}} \cr
= \frac{{\frac{{ - \left( x \right)\left( {2 - x} \right)}}{{ - \left( {x^2 - 1} \right)^{{\textstyle{1 \over 2}}} \left( {x^2 - 1} \right)^{{\textstyle{3 \over 2}}} }}}}{{\left( {x^2 - 1} \right)}} \cr
\cr
{\rm Is this ok so far and how would I simplify this? } \cr \cr\)
b)
\(\displaystyle \L
y = \left( {2x\sqrt {x^2 + 4x} + \frac{1}{{\sqrt {x^2 + 4x} }}} \right)^2 \\
\\
\\
{\rm How would I differentiate this? Thank you }\)
a)
\(\displaystyle \L
y = \frac{{2 - x}}{{\sqrt {x^2 - 1} }}\cr
{\rm [I used the quotient rule] } \cr
{\rm let }u = 2 - x \cr
\frac{{du}}{{dx}} = - 1 \cr
\cr
{\rm let }v = \left( {x^2 - 1} \right)^{ - {\textstyle{1 \over 2}}} \cr
\frac{{dv}}{{dx}} = - \frac{1}{2}\left( {x^2 - 1} \right)^{ - {\textstyle{3 \over 2}}} \left( {2x} \right) \cr
\cr
\frac{{dy}}{{dx}} = \frac{{v\frac{{du}}{{dx}} - u\frac{{dv}}{{dx}}}}{{v^2 }} \cr
= \frac{{ - \left( {x^2 - 1} \right)^{ - {\textstyle{1 \over 2}}} - \left( {2 - x} \right)\left( { - {\textstyle{1 \over 2}}} \right)\left( {x^2 - 1} \right)^{ - {\textstyle{3 \over 2}}} \left( {2x} \right)}}{{\left( {x^2 - 1} \right)}} \cr
= \frac{{\frac{{ - \left( x \right)\left( {2 - x} \right)}}{{ - \left( {x^2 - 1} \right)^{{\textstyle{1 \over 2}}} \left( {x^2 - 1} \right)^{{\textstyle{3 \over 2}}} }}}}{{\left( {x^2 - 1} \right)}} \cr
\cr
{\rm Is this ok so far and how would I simplify this? } \cr \cr\)
b)
\(\displaystyle \L
y = \left( {2x\sqrt {x^2 + 4x} + \frac{1}{{\sqrt {x^2 + 4x} }}} \right)^2 \\
\\
\\
{\rm How would I differentiate this? Thank you }\)