\(\displaystyle 1) \ Given: \ f[cos(x)] \ = \ x^{2}, \ Find \ \lim_{x\to0}f' [cos(x)]\)
\(\displaystyle Note: \ \frac{d[f[g(x)]]}{dx} \ = \ f'[g(x)]g'(x).\)
\(\displaystyle Hence, \ taking \ the \ derivatives \ of \ both \ sides, \ yields:\)
\(\displaystyle \frac{d[f[cos(x)]]}{dx} \ = \ \frac{d[x^{2}]}{dx}\)
\(\displaystyle f'[cos(x)](-sin(x)) \ = \ 2x, \ f'[cos(x)] \ = \ \frac{-2x}{sin(x)}\)
\(\displaystyle Then, \ \lim_{x\to0}f'[cos(x)] \ = \ \lim_{x\to0}\frac{-2x}{sin(x)} \ = \ -2, \ use \ the \ Marqui.\)