Please help with Derivatives - by tonight?

rafeeki92

New member
Joined
Nov 3, 2009
Messages
14
1) Given f(cosx) = x2, find limx->0 f'(cosx)

For this one, I tried this...but didn't reach any sort of conclusion:
f'(cosx) = limx->cosx [f(x) - x2]/(x-cosx)

2) Find f'(x2) if d/dx[f(x2)] = x2

I wasn't sure how to approach this one at all.
 
rafeeki92 said:
1) Given f(cosx) = x2, find limx->0 f'(cosx)

For this one, I tried this...but didn't reach any sort of conclusion:
f'(cosx) = limx->cosx [f(x) - x2]/(x-cosx)

2) Find f'(x2) if d/dx[f(x2)] = x2

I wasn't sure how to approach this one at all.

1) Youre supposed to evaluate the limit as x-> 0 f'(cosx). Using the chain rule we see f(cos(x)) = x^2 => f'(cosx)sin(x) = 2x => f'(cos(x)) = 2*(x/sinx) Then take the limit of both sides.

2) Use a similar approach to the above.
 
Oh thank you so much. I'm not sure how I should approach the second question, though. Any hints?
 
2) Find f  (x2) when d[f(x2)]dx = x2.\displaystyle 2) \ Find \ f \ ' \ (x^{2}) \ when \ \frac{d[f(x^{2})]}{dx} \ = \ x^{2}.

d[f(x2)]dx = [f  (x2)](2x) = x2, hence, f  (x2) = x2.\displaystyle \frac{d[f(x^{2})]}{dx} \ = \ [f \ ' \ (x^{2})](2x) \ = \ x^{2}, \ hence, \ f \ ' \ (x^{2}) \ = \ \frac{x}{2}.
 
1) Given: f[cos(x)] = x2, Find limx0f[cos(x)]\displaystyle 1) \ Given: \ f[cos(x)] \ = \ x^{2}, \ Find \ \lim_{x\to0}f' [cos(x)]

Note: d[f[g(x)]]dx = f[g(x)]g(x).\displaystyle Note: \ \frac{d[f[g(x)]]}{dx} \ = \ f'[g(x)]g'(x).

Hence, taking the derivatives of both sides, yields:\displaystyle Hence, \ taking \ the \ derivatives \ of \ both \ sides, \ yields:

d[f[cos(x)]]dx = d[x2]dx\displaystyle \frac{d[f[cos(x)]]}{dx} \ = \ \frac{d[x^{2}]}{dx}

f[cos(x)](sin(x)) = 2x, f[cos(x)] = 2xsin(x)\displaystyle f'[cos(x)](-sin(x)) \ = \ 2x, \ f'[cos(x)] \ = \ \frac{-2x}{sin(x)}

Then, limx0f[cos(x)] = limx02xsin(x) = 2, use the Marqui.\displaystyle Then, \ \lim_{x\to0}f'[cos(x)] \ = \ \lim_{x\to0}\frac{-2x}{sin(x)} \ = \ -2, \ use \ the \ Marqui.
 
Top