OK, I'll assume those are "L"s and you mean to be reporting a Survivorship function.
L<sub>33</sub>/L<sub>32</sub> = 90/100 = 9/10
----- Giving q<sub>32</sub> = 1-(9/10) = 1/10
L<sub>34</sub>/L<sub>33</sub> = 63/90 = 7/10
----- Giving q<sub>34</sub> = 1-(7/10) = 3/10
This makes
q<sub>[32]</sub> = (1-2*k)*(1/10)
q<sub>[32]+1</sub> = (1-k)*(3/10)
p = 1-q
Finally, L<sub>[32]</sub>*(p<sub>[32]</sub>)*(p<sub>[32]+1</sub>) = 63
90*(1-q<sub>[32]</sub>)*(1-q<sub>[32]+1</sub>) = 63
90*(1-((1-2*k)*(1/10)))*(1-((1-k)*(3/10))) = 63
I get k = -7, which makes no sense and k = 1/6.
L<sub>[32]+1</sub> = 90*(1-((1-2*k)*(1/10))) = 84
-----
Checking: L<sub>[32]+2</sub> = L<sub>34</sub> = 84*(1-((1-k)*(3/10))) = 63
-----