Hello, AirForceOne!
The Pulley Problem is rather intricate . . .
Code:
A
/
/
O /
- *
: | * F
: | * 24 /
: |12 * /
: | * /
15 Q+ - - - - - - - - - *P
: | |
: |3 |3
: | |
- * - - - - - - - - - *
J G
O is the center of 15-cm circle; P is the center of 3-cm circle.
The line joining the centers: \(\displaystyle \,OP\,=\,24\)
\(\displaystyle JG\) is the length of the pulley tangent to both circles.
\(\displaystyle \;\;\)(There is an identical length of pulley at the top of assembly.)
We have right triangle \(\displaystyle OQP\) and we see that is a 30-60-90 triangle.
\(\displaystyle \;\;\sin(\angle OPQ) = \frac{12}{24}\,=\,\frac{1}{2}
\;\;\Rightarrow\;\;\angle OPQ\,=\,30^o\,=\,\frac{\pi}{6},\;\;\angle POQ\,=\,\frac{\pi}{3}\)
Note that: \(\displaystyle \,QP\,=\,JG\,=\,12\sqrt{3}\) cm.
Length of arc: \(\displaystyle \,L\,=\,r\theta\)
\(\displaystyle \;\;\)where \(\displaystyle r\) is the radius and \(\displaystyle \theta\) is the central angle in radians.
Hence: \(\displaystyle \,\angle AOJ\,=\,\frac{4\pi}{3}\)
And the "rest of the angle": \(\displaystyle \,\angle(AOJ)'\; =\;2\pi\,-\,\frac{4\pi}{3}\:=\:\frac{5\pi}{3}\)
The length of the pulley from \(\displaystyle A\) counterclockwise to \(\displaystyle J\)
\(\displaystyle \;\;\) is: \(\displaystyle \,L_1\:=\:15\left(\frac{5\pi}{3}\right)\:=\:25\pi\) cm
In the smaller circle: \(\displaystyle \,\angle OPQ\,=\,\frac{\pi}{6},\:\) hence: \(\displaystyle \angle OPG\:=\:\frac{\pi}{6}\,+\,\frac{\pi}{2}\:=\:\frac{2\pi}{3}\)
Hence: \(\displaystyle \angle FPG\,=\,\frac{4\pi}{3}\)
And the "rest of the angle": \(\displaystyle \,\angle(FPG)'\:=\:2\pi\,-\,\frac{4\pi}{3}\:=\:\frac{2\pi}{3}\)
The length of the pulley from \(\displaystyle F\) clockwise to \(\displaystyle G\)
\(\displaystyle \;\;\)is: \(\displaystyle \,L_2\:=\:3\left(\frac{2\pi}{3}\right)\:=\:2\pi\) cm.
The total length of the pulley is: \(\displaystyle \,L_1\,+\,L_2\,+\,2\cdot JG\;=\;25\pi\,+\,2\pi\,+\,2(12\sqrt{3})\)
Answer: \(\displaystyle \:27\pi + 24\sqrt{3}\;\approx\;126.4\) cm.