PLEASE HELP ME TO SOLVE THIS QUESTION

r267747

New member
Joined
Oct 1, 2009
Messages
33
-3/4
x
I don't know how to find its derivative using first principle. So please help me
 
What is that supposed to be?. Please use preview before you post so you can see how it will turn out.
 
r267747 said:
I don't know how to find its derivative using first principle with respect to x. So please help me
-3/4
x (where-3/4 is the power of x)
 
Hello, r267747!

This is an ugly problem!


Find the derivative using first principles: .f(x)=x34\displaystyle f(x) \:=\:x^{-\frac{3}{4}}

\(\displaystyle \text}{We want: }\;f'(x) \:=\:\lim_{_{h\to0}}\dfrac{f(x+h) - f(x)}{h}\)

[1]    f(x+h)f(x)  =  (x+h)34x34  =  1(x+h)341x34  =  x34(x+h)34x34(x+h)34\displaystyle [1]\;\;f(x+h) - f(x) \;=\;(x+h)^{-\frac{3}{4}} - x^{-\frac{3}{4}} \;=\;\frac{1}{(x+h)^{\frac{3}{4}}} - \frac{1}{x^{\frac{3}{4}}} \;=\;\frac{x^{\frac{3}{4}} - (x+h)^{\frac{3}{4}}}{x^{\frac{3}{4}}(x+h)^{\frac{3}{4}}}


Here's where it gets very messy . . .


The numerator is: N  =  x34(x+h)34\displaystyle \text{The numerator is: }\:N \;=\;x^{\frac{3}{4}} - (x+h)^{\frac{3}{4}}

Let: a=x14,  b=(x+h)14\displaystyle \text{Let: }\:a \,=\,x^{\frac{1}{4}},\;b \,=\,(x+h)^{\frac{1}{4}}

. . and we have:   N  =  a3b3\displaystyle \text{and we have: }\;N \;=\;a^3 - b^3

. . which factors:   N  =  (ab)(a2+ab+b2)\displaystyle \text{which factors: }\;N \;=\;(a-b)(a^2+ab+b^2)


The fraction becomes:   (ab)(a2+ab+b2)a3b3\displaystyle \text{The fraction becomes: }\;\frac{(a-b)(a^2+ab+b^2)}{a^3b^3}


Multiply by: a3+a2b+ab2+b3a3+a2b+ab2+b3\displaystyle \text{Multiply by: }\:\frac{a^3 + a^2b+ab^2+b^3}{a^3+a^2b+ab^2+b^3}

. . (ab)(a2+ab+b2)a3b3a3+a2b+ab2+b3a3+a2b+ab2+b3\displaystyle \frac{(a-b)(a^2+ab+b^2)}{a^3b^3}\cdot \frac{a^3 + a^2b+ab^2+b^3}{a^3+a^2b+ab^2+b^3}

. . . . .=  (ab)(a3+a2b+ab2+b3)a3b3a2+ab+b2a3+a2b+ab2+b3\displaystyle =\;\frac{(a-b)(a^3+a^2b+ab^2+b^3)}{a^3b^3}\cdot\frac{a^2+ab+b^2}{a^3+a^2b+ab^2+b^3}

. . . . .=  a4b4a3b3a2+ab+b2a3+a2b+ab2+b3\displaystyle =\;\frac{a^4-b^4}{a^3b^3}\cdot\frac{a^2+ab+b^2}{a^3+a^2b+ab^2+b^3}


Back-substitute in the first fraction:\displaystyle \text{Back-substitute in the first fraction:}

. . [x14]4[(x+h)14]4a3b3a2+ab+b2a3+a2b+ab2+b3\displaystyle \frac{\left[x^{\frac{1}{4}}\right]^4 - \left[(x+h)^{\frac{1}{4}}\right]^4}{a^3b^3}\cdot\frac{a^2+ab + b^2}{a^3+a^2b+ab^2+b^3}

. . =  x(x+h)a3b3a2+ab+b2a3+a2b+ab2+b3  =  ha3b3a2+ab+b2a3+a2b+ab2+b3\displaystyle =\;\frac{x-(x+h)}{a^3b^3}\cdot\frac{a^2+ab+b^2}{a^3+a^2b + ab^2 + b^3} \;=\;\frac{-h}{a^3b^3}\cdot\frac{a^2+ab+b^2}{a^3+a^2b+ab^2+b^3}


[2]   Divide by h ⁣:f(x+h)f(x)h  =  (a2+ab+b2)a3b3(a3+a2b+ab2+b3)\displaystyle [2]\;\text{ Divide by }h\!:\quad \frac{f(x+h)-f(x)}{h} \;=\;\frac{-(a^2+ab+b^2)}{a^3b^3(a^3+a^2b+ab^2+b^3)}


Back-substitute:   x12+(x14)(x+h)14+(x+h)12x34(x+h)34[x34+x12(x+h)14+x14(x+h)12+(x+h)34]\displaystyle \text{Back-substitute: }\; -\frac{ x^{\frac{1}{2}} + (x^{\frac{1}{4}})(x+h)^{\frac{1}{4}} + (x+h)^{\frac{1}{2}}} {x^{\frac{3}{4}}(x+h)^{\frac{3}{4}}\left[x^{\frac{3}{4}} + x^\frac{1}{2}(x+h)^{\frac{1}{4}} + x^{\frac{1}{4}}(x+h)^{\frac{1}{2}} + (x+h)^{\frac{3}{4}}\right]}


[3]   Take limit:   limh0(x12+(x14)(x+h)14+(x+h)12x34(x+h)34[x34+x12(x+h)14+x14(x+h)12+(x+h)34])\displaystyle [3]\;\text{ Take limit: }\;\lim_{h\to0}\left( -\,\frac{ x^{\frac{1}{2}} + (x^{\frac{1}{4}})(x+h)^{\frac{1}{4}} + (x+h)^{\frac{1}{2}}} {x^{\frac{3}{4}}(x+h)^{\frac{3}{4}}\left[x^{\frac{3}{4}} + x^\frac{1}{2}(x+h)^{\frac{1}{4}} + x^{\frac{1}{4}}(x+h)^{\frac{1}{2}} + (x+h)^{\frac{3}{4}}\right]} \right)

And we have:   x12+(x14)(x14)+x12(x34)(x34)(x34+(x12)(x14)+(x14)(x12)+x34)  =  x12+x12+x12x32(x34+x34+x34+x34)\displaystyle \text{And we have: }\;-\, \frac{x^{\frac{1}{2}} + (x^{\frac{1}{4}})(x^{\frac{1}{4}}) + x^{\frac{1}{2}}} {(x^{\frac{3}{4}}) (x^{\frac{3}{4}}) \left(x^{\frac{3}{4}} + (x^{\frac{1}{2}})(x^{\frac{1}{4}}) + (x^{\frac{1}{4}})(x^{\frac{1}{2}}) + x^{\frac{3}{4}}\right)} \;=\;-\,\frac{x^{\frac{1}{2}} + x^{\frac{1}{2}} + x^{\frac{1}{2}}} {x^{\frac{3}{2}}\left(x^{\frac{3}{4}} + x^{\frac{3}{4}} + x^{\frac{3}{4}} + x^{\frac{3}{4}}\right)}

. . . . . . . . =  3x12x324x34  =  3x124x94\displaystyle =\;-\,\frac{3x^{\frac{1}{2}}} {x^{\frac{3}{2}}\cdot4x^{\frac{3}{4}}} \;=\;-\,\frac{3x^{\frac{1}{2}}} {4x^{\frac{9}{4}}}


Therefore:   f(x)  =  34x74  =  34x74\displaystyle \text{Therefore: }\;f'(x) \;=\;\frac{3}{4x^{\frac{7}{4}}} \;=\;\frac{3}{4}x^{-\frac{7}{4}}

 
Fantastic Soroban. That was a rough one for a Calc I student.

It's a shame L'Hopital couldn't be used.

(x+h)34x34h\displaystyle \frac{(x+h)^{\frac{-3}{4}}-x^{\frac{-3}{4}}}{h}

limh034(x+h)74\displaystyle \lim_{h\to 0}\frac{-3}{4}(x+h)^{\frac{-7}{4}}

34x74\displaystyle \frac{-3}{4}x^{\frac{-7}{4}} :D

Just being wacky. Rather circular logic, huh
 
Another way, I think a little less protracted.\displaystyle Another \ way, \ I \ think \ a \ little \ less \ protracted.

f(x) = x3/4, find f(x) the hard way.\displaystyle f(x) \ = \ x^{-3/4}, \ find \ f'(x) \ the \ hard \ way.

f(x) = limh0f(x+h)f(x)h = limh0(x+h)3/4x3/4h\displaystyle f'(x) \ = \ \lim_{h\to0}\frac{f(x+h)-f(x)}{h} \ = \ \lim_{h\to0}\frac{(x+h)^{-3/4}-x^{-3/4}}{h}

After some algebra, we get: limh0 x3/4(x+h)3/4h(x3/4)(x+h)3/4\displaystyle After \ some \ algebra, \ we \ get: \ \lim_{h\to0} \ \frac{x^{3/4}-(x+h)^{3/4}}{h(x^{3/4})(x+h)^{3/4}}

Now, a minor digression.\displaystyle Now, \ a \ minor \ digression.

Note, now here is the kicker: (ab) = (a1/4b1/4)(a3/4+a1/4b1/2+a1/2b1/4+b3/4)\displaystyle Note, \ now \ here \ is \ the \ kicker: \ (a-b) \ = \ (a^{1/4}-b^{1/4})(a^{3/4}+a^{1/4}b^{1/2}+a^{1/2}b^{1/4}+b^{3/4})

This implies that (a1/4b1/4) = (ab)(a3/4+a1/4b1/2+a1/2b1/4+b3/4)\displaystyle This \ implies \ that \ (a^{1/4}-b^{1/4}) \ = \ \frac{(a-b)}{(a^{3/4}+a^{1/4}b^{1/2}+a^{1/2}b^{1/4}+b^{3/4})}

Let a1/4 = x3/4 and b1/4 = (x+h)3/4\displaystyle Let \ a^{1/4} \ = \ x^{3/4} \ and \ b^{1/4} \ = \ (x+h)^{3/4}

Then, a1/2 = x3/2 and b1/2 = (x+h)3/2\displaystyle Then, \ a^{1/2} \ = \ x^{3/2} \ and \ b^{1/2} \ = \ (x+h)^{3/2}

And a3/4 = x9/4 and b3/4 = (x+h)9/4\displaystyle And \ a^{3/4} \ = \ x^{9/4} \ and \ b^{3/4} \ = \ (x+h)^{9/4}

Finally, a = x3 and b = (x+h)3, digression over.\displaystyle Finally, \ a \ = \ x^{3} \ and \ b \ = \ (x+h)^{3}, \ digression \ over.

Ergo, limh0 x3/4(x+h)3/4h(x3/4)(x+h)3/4 = limh0 a1/4b1/4h(a1/4)(b1/4), Substitute\displaystyle Ergo, \ \lim_{h\to0} \ \frac{x^{3/4}-(x+h)^{3/4}}{h(x^{3/4})(x+h)^{3/4}} \ = \ \lim_{h\to0} \ \frac{a^{1/4}-b^{1/4}}{h(a^{1/4})(b^{1/4})}, \ Substitute

= limh0 (ab)h[a3/4+a1/4b1/2+a1/2b1/4+b3/4][a1/4b1/4], Substitute (Line 7)\displaystyle = \ \lim_{h\to0} \ \frac{(a-b)}{h[a^{3/4}+a^{1/4}b^{1/2}+a^{1/2}b^{1/4}+b^{3/4}][a^{1/4}b^{1/4}]}, \ Substitute \ (Line \ 7)

= limh0 (ab)h[ab1/4+a1/2b3/4+a3/4b1/2+a1/4b]\displaystyle = \ \lim_{h\to0} \ \frac{(a-b)}{h[ab^{1/4}+a^{1/2}b^{3/4}+a^{3/4}b^{1/2}+a^{1/4}b]}

= limh0 x3(x+h)3h[x3(x+h)3/4+x3/2(x+h)9/4+x9/4(x+h)3/2+x3/4(x+h)3], Resubstitute\displaystyle = \ \lim_{h\to0} \ \frac{x^{3}-(x+h)^{3}}{h[x^{3}(x+h)^{3/4}+x^{3/2}(x+h)^{9/4}+x^{9/4}(x+h)^{3/2}+x^{3/4}(x+h)^{3}]}, \ Resubstitute

= limh0 x3(x3+3x2h+3xh2+h3)h[x3(x+h)3/4+x3/2(x+h)9/4+x9/4(x+h)3/2+x3/4(x+h)3], Expand binomial\displaystyle = \ \lim_{h\to0} \ \frac{x^{3}-(x^{3}+3x^{2}h+3xh^{2}+h^{3})}{h[x^{3}(x+h)^{3/4}+x^{3/2}(x+h)^{9/4}+x^{9/4}(x+h)^{3/2}+x^{3/4}(x+h)^{3}]}, \ Expand \ binomial

= limh0 3x23xhh2[x3(x+h)3/4+x3/2(x+h)9/4+x9/4(x+h)3/2+x3/4(x+h)3], Cancel out h\displaystyle = \ \lim_{h\to0} \ \frac{-3x^{2}-3xh-h^{2}}{[x^{3}(x+h)^{3/4}+x^{3/2}(x+h)^{9/4}+x^{9/4}(x+h)^{3/2}+x^{3/4}(x+h)^{3}]}, \ Cancel \ out \ h

= limh0 3x2(x3)(x3/4)+(x3/2)(x9/4)+(x9/4)(x3/2)+(x3/4)(x3), Selfevident\displaystyle = \ \lim_{h\to0} \ \frac{-3x^{2}}{(x^{3})(x^{3/4})+(x^{3/2})(x^{9/4})+(x^{9/4})(x^{3/2})+(x^{3/4})(x^{3})}, \ Self-evident

= limh0 3x2x15/4+x15/4+x15/4+x15/4 = limh0 3x24x15/4 = 34x7/4 QED\displaystyle = \ \lim_{h\to0} \ -\frac{3x^{2}}{x^{15/4}+x^{15/4}+x^{15/4}+x^{15/4}} \ = \ \lim_{h\to0} \ -\frac{3x^{2}}{4x^{15/4}} \ = \ -\frac{3}{4}x^{-7/4} \ QED
 
An easier way yet. The easiest?\displaystyle An \ easier \ way \ yet. \ The \ easiest?

From above, we have f(x) = limh0 x3/4(x+h)3/4h(x3/4)(x+h)3/4\displaystyle From \ above, \ we \ have \ f'(x) \ = \ \lim_{h\to0} \ \frac{x^{3/4}-(x+h)^{3/4}}{h(x^{3/4})(x+h)^{3/4}}

= limh0 x3/4(x+h)3/4h(x3/4)(x+h)3/4  x3/4+(x+h)3/4x3/4+(x+h)3/4 = limh0 x3/2(x+h)3/2h[x3/2(x+h)3/4+x3/4(x+h)3/2]\displaystyle = \ \lim_{h\to0} \ \frac{x^{3/4}-(x+h)^{3/4}}{h(x^{3/4})(x+h)^{3/4}} \ * \ \frac{x^{3/4}+(x+h)^{3/4}}{x^{3/4}+(x+h)^{3/4}} \ = \ \lim_{h\to0} \ \frac{x^{3/2}-(x+h)^{3/2}}{h[x^{3/2}(x+h)^{3/4}+x^{3/4}(x+h)^{3/2}]}

= limh0 x3/2(x+h)3/2h[x3/2(x+h)3/4+x3/4(x+h)3/2]  x3/2+(x+h)3/2x3/2+(x+h)3/2\displaystyle = \ \lim_{h\to0} \ \frac{x^{3/2}-(x+h)^{3/2}}{h[x^{3/2}(x+h)^{3/4}+x^{3/4}(x+h)^{3/2}]} \ * \ \frac{x^{3/2}+(x+h)^{3/2}}{x^{3/2}+(x+h)^{3/2}}

= limh0 x3(x+h)3h[x3/2(x+h)3/4+x3/4(x+h)3/2][x3/2+(x+h)3/2]\displaystyle = \ \lim_{h\to0} \ \frac{x^{3}-(x+h)^{3}}{h[x^{3/2}(x+h)^{3/4}+x^{3/4}(x+h)^{3/2}][x^{3/2}+(x+h)^{3/2}]}

= limh0 x3x33x2h3xh2h3h[x3/2(x+h)3/4+x3/4(x+h)3/2][x3/2+(x+h)3/2]\displaystyle = \ \lim_{h\to0} \ \frac{x^{3}-x^{3}-3x^{2}h-3xh^{2}-h^{3}}{h[x^{3/2}(x+h)^{3/4}+x^{3/4}(x+h)^{3/2}][x^{3/2}+(x+h)^{3/2}]}

= limh0 3x23xhh2[x3/2(x+h)3/4+x3/4(x+h)3/2][x3/2+(x+h)3/2]\displaystyle = \ \lim_{h\to0} \ \frac{-3x^{2}-3xh-h^{2}}{[x^{3/2}(x+h)^{3/4}+x^{3/4}(x+h)^{3/2}][x^{3/2}+(x+h)^{3/2}]}

= limh0 3x2[x3/2x3/4+x3/4x3/2][x3/2+x3/2] = limh0 3x2(2x9/4)(2x3/2) = limh0 3x24x15/4 =34x7/4QED\displaystyle = \ \lim_{h\to0} \ \frac{-3x^{2}}{[x^{3/2}x^{3/4}+x^{3/4}x^{3/2}][x^{3/2}+x^{3/2}]} \ = \ \lim_{h\to0} \ \frac{-3x^{2}}{(2x^{9/4})(2x^{3/2})} \ = \ \lim_{h\to0} \ \frac{-3x^{2}}{4x^{15/4}} \ =-\frac{3}{4}x^{-7/4}QED

Note: f(x) = limh0 x3/4(x+h)3/4h(x3/4)(x+h)3/4  The Marqui gives the indeterminate form 00,\displaystyle Note: \ f'(x) \ = \ \lim_{h\to0} \ \frac{x^{3/4}-(x+h)^{3/4}}{h(x^{3/4})(x+h)^{3/4}} \ \ The \ Marqui \ gives \ the \ indeterminate \ form \ \frac{0}{0},

 but to no avail, as it is circular, sorry galactus.\displaystyle \ but \ to \ no \ avail, \ as \ it \ is \ circular, \ sorry \ galactus.
 
Note: If I plugged limh0 x3/4(x+h)3/4h(x3/4)(x+h)3/4 into my trusty TI89,\displaystyle Note: \ If \ I \ plugged \ \lim_{h\to0} \ \frac{x^{3/4}-(x+h)^{3/4}}{h(x^{3/4})(x+h)^{3/4}} \ into \ my \ trusty \ TI-89,

 it will immediately return the correct limit  34x7/4.\displaystyle \ it \ will \ immediately \ return \ the \ correct \ limit \ - \ \frac{-3}{4x^{7/4}}.

Anyone know how it does that? In other words, does it follow my above "easier" limit?\displaystyle Anyone \ know \ how \ it \ does \ that? \ In \ other \ words, \ does \ it \ follow \ my \ above \ "easier" \ limit?

I would like to see the algorithm it follows. Just curious.\displaystyle I \ would \ like \ to \ see \ the \ algorithm \ it \ follows. \ Just \ curious.
 
The easier way possible to find the limit of:

limh0 (x+h)3/4x3/4h. Just plugged it into your trusty TI89\displaystyle \lim_{h\to0} \ \frac{(x+h)^{-3/4}-x^{-3/4}}{h}. \ Just \ plugged \ it \ into \ your \ trusty \ TI-89

\(\displaystyle and \ avoid \ all \ the \ grunt \ work. \ It \ (TI-89) \ will \ immediately \ spit \ out \ the \ answer, \ to \ wit: \ \frac{-3}{4x^{7/4}}.\\)

Afterthought: This is what drove "The Unabomber" to distraction. He could not take the\displaystyle Afterthought: \ This \ is \ what \ drove \ "The \ Unabomber" \ to \ distraction. \ He \ could \ not \ take \ the

marvels of modern technology (he had a Doctorate in Math), and hated anything to do with\displaystyle marvels \ of \ modern \ technology \ (he \ had \ a \ Doctorate \ in \ Math), \ and \ hated \ anything \ to \ do \ with

computers as he most likely grunted everything out and expected the same from his\displaystyle computers \ as \ he \ most \ likely \ grunted \ everything \ out \ and \ expected \ the \ same \ from \ his

contemporaries.\displaystyle contemporaries.

Before being captured, he lived in a shack in the woods, and ate beavers for his sustenance. Ugh.\displaystyle Before \ being \ captured, \ he \ lived \ in \ a \ shack \ in \ the \ woods, \ and \ ate \ beavers \ for \ his \ sustenance. \ Ugh.
 
Yes, but sometimes it's fun to do it by hand to keep them synapses firing. I like my calculators, but I do not want to become too dependent on them.
 
Right on galactus, as I concur wholeheartedly, but one does wonder what is happening to the youth.

Case in point: When I lived in New Orleans, I once went into a 7-11 to purchase some junk food, but was unable to as the cash register (computized) was on the blink and the clerk wasn't adept enough to add up my purchases manually.

A blessing in disguise?
 
The so-called 'youth'. Yeah, I see it all the time. The apathy and downright laziness is very disconcerting.

I know a young man right now that just sits on his behind playing video games instead of trying to better his life. No education, no skills, and then gripes because he can't get a job. "The ones I find suck", he said. No wonder. Who wants someone like that?. As far as a prospective employer is concerned, he's worthless. Going to college or trade school is just crazy talk. Yet, there are plenty of people out there with skills and education who can not find any job.

Take math, for instance. Do you think society as a whole, indirectly or directly, programs people to hate it so?. Todays American way of 'thinking' appears to be stay as dumbed down as possible. The TV programs that get the high ratings are a testament to that. Any exertion, rather physical or mental, is to be avoided at all cost. Let's all just party and play video games for a living. That would be nice, but that's not the way it is.

And another thing is that infernal text messaging that has spilled over into the way people write in general.

My use of grammar is not the best, that's for sure, but :roll:
 
Galactus, enough said, as I know exactly where you are coming from.

Think of "The Time Machine" by H.G. Wells. Remember, all the people lived in a "state of ignorant bliss" controlled by the Murdocks, if memory serves me correctly.
 
Top