\(\displaystyle Another \ way, \ I \ think \ a \ little \ less \ protracted.\)
\(\displaystyle f(x) \ = \ x^{-3/4}, \ find \ f'(x) \ the \ hard \ way.\)
\(\displaystyle f'(x) \ = \ \lim_{h\to0}\frac{f(x+h)-f(x)}{h} \ = \ \lim_{h\to0}\frac{(x+h)^{-3/4}-x^{-3/4}}{h}\)
\(\displaystyle After \ some \ algebra, \ we \ get: \ \lim_{h\to0} \ \frac{x^{3/4}-(x+h)^{3/4}}{h(x^{3/4})(x+h)^{3/4}}\)
\(\displaystyle Now, \ a \ minor \ digression.\)
\(\displaystyle Note, \ now \ here \ is \ the \ kicker: \ (a-b) \ = \ (a^{1/4}-b^{1/4})(a^{3/4}+a^{1/4}b^{1/2}+a^{1/2}b^{1/4}+b^{3/4})\)
\(\displaystyle This \ implies \ that \ (a^{1/4}-b^{1/4}) \ = \ \frac{(a-b)}{(a^{3/4}+a^{1/4}b^{1/2}+a^{1/2}b^{1/4}+b^{3/4})}\)
\(\displaystyle Let \ a^{1/4} \ = \ x^{3/4} \ and \ b^{1/4} \ = \ (x+h)^{3/4}\)
\(\displaystyle Then, \ a^{1/2} \ = \ x^{3/2} \ and \ b^{1/2} \ = \ (x+h)^{3/2}\)
\(\displaystyle And \ a^{3/4} \ = \ x^{9/4} \ and \ b^{3/4} \ = \ (x+h)^{9/4}\)
\(\displaystyle Finally, \ a \ = \ x^{3} \ and \ b \ = \ (x+h)^{3}, \ digression \ over.\)
\(\displaystyle Ergo, \ \lim_{h\to0} \ \frac{x^{3/4}-(x+h)^{3/4}}{h(x^{3/4})(x+h)^{3/4}} \ = \ \lim_{h\to0} \ \frac{a^{1/4}-b^{1/4}}{h(a^{1/4})(b^{1/4})}, \ Substitute\)
\(\displaystyle = \ \lim_{h\to0} \ \frac{(a-b)}{h[a^{3/4}+a^{1/4}b^{1/2}+a^{1/2}b^{1/4}+b^{3/4}][a^{1/4}b^{1/4}]}, \ Substitute \ (Line \ 7)\)
\(\displaystyle = \ \lim_{h\to0} \ \frac{(a-b)}{h[ab^{1/4}+a^{1/2}b^{3/4}+a^{3/4}b^{1/2}+a^{1/4}b]}\)
\(\displaystyle = \ \lim_{h\to0} \ \frac{x^{3}-(x+h)^{3}}{h[x^{3}(x+h)^{3/4}+x^{3/2}(x+h)^{9/4}+x^{9/4}(x+h)^{3/2}+x^{3/4}(x+h)^{3}]}, \ Resubstitute\)
\(\displaystyle = \ \lim_{h\to0} \ \frac{x^{3}-(x^{3}+3x^{2}h+3xh^{2}+h^{3})}{h[x^{3}(x+h)^{3/4}+x^{3/2}(x+h)^{9/4}+x^{9/4}(x+h)^{3/2}+x^{3/4}(x+h)^{3}]}, \ Expand \ binomial\)
\(\displaystyle = \ \lim_{h\to0} \ \frac{-3x^{2}-3xh-h^{2}}{[x^{3}(x+h)^{3/4}+x^{3/2}(x+h)^{9/4}+x^{9/4}(x+h)^{3/2}+x^{3/4}(x+h)^{3}]}, \ Cancel \ out \ h\)
\(\displaystyle = \ \lim_{h\to0} \ \frac{-3x^{2}}{(x^{3})(x^{3/4})+(x^{3/2})(x^{9/4})+(x^{9/4})(x^{3/2})+(x^{3/4})(x^{3})}, \ Self-evident\)
\(\displaystyle = \ \lim_{h\to0} \ -\frac{3x^{2}}{x^{15/4}+x^{15/4}+x^{15/4}+x^{15/4}} \ = \ \lim_{h\to0} \ -\frac{3x^{2}}{4x^{15/4}} \ = \ -\frac{3}{4}x^{-7/4} \ QED\)