Please help: Angles L and M are complementary, as are....

G

Guest

Guest
Angle L and angle M are complementary angles. Angle N and angle P are complementary angles. If the measurement of angle L = y - 2, the measurement of angle M = 2x + 3, the measurement of angle N = 2x - y, and the measurement of angle P = x - 1, find the values of x, y, measurement of angle L, measurement of angle M, measurement of angle N, and measurement of angle P.
 
Re: Please help: Angles L and M are complementary, as are...

Hello, Blair!

What part is giving you trouble?


L\displaystyle \angle L and M\displaystyle \angle M are complementary angles.
N\displaystyle \angle N and P\displaystyle \angle P are complementary angles.

If L=y2,    M=2x+3,    N=2xy,    P=x1\displaystyle \angle L\:=\:y\,-\,2,\;\;\angle M\:=\:2x\,+\,3,\;\;\angle N\:=\:2x\,-\,y,\;\;\angle P\:=\:x\,-\,1,

find: x,  y,  L,  M,  N,  P.\displaystyle \,x,\;y,\;\angle L,\;\angle M,\;\angle N,\;\angle P.

L+M=90o        (y2)+(2x+3)=90        2x+y=89  \displaystyle \angle L\,+\,\angle M\:=\:90^o\;\;\Rightarrow\;\;(y\,-\,2)\,+\,(2x\,+\,3)\:=\:90\;\;\Rightarrow\;\;2x\,+\,y\:=\:89\; [1]

N+P=90o        (2xy)+(x1)=90        3xy=91  \displaystyle \angle N\,+\,\angle P\:=\:90^o\;\;\Rightarrow\;\;(2x\,-\,y)\,+\,(x\,-\,1)\:=\:90\;\;\Rightarrow\;\;3x\,-\,y\:=\:91\; [2]

Add [1] and [2]: 5x=180        x=36\displaystyle \,5x \,=\,180\;\;\Rightarrow\;\;x\,=\,36

Substitute into [1]: 236+y=89        y=17\displaystyle \,2\cdot36\,+\,y\:=\:89\;\;\Rightarrow\;\;y\,=\,17

Then we have: .\(\displaystyle \begin{array}{cccc}\angle L\:=\:y\,-\,2\:=\:17\,-\,2\:=\:15 \\
\angle M\:=\:2x\,+\,3\:=\:2\cdot36\,+\,3\:=\:75 \\
\angle N\:=\:2x\,-\,y\:=\:2\cdot36\,-\,17\:=\:55 \\
\angle P\:=\:x\,-\,1\:=\:36\,-\,1\:=\:35\end{array}\)

 
Top