Re: Trigonometric substitutions
Hello, lisasayzhi!
I couldn't follow your work all the through, sorry.
But your work is truly impressive!
You could have save a LOT work with one observation . . .
\(\displaystyle \text{1. Find }\L I\;=\;\int \frac{1}{\cos^3x}\,dx\)
u=cosx1⇒du=cos2xsinxdx
dv=cos2x1dx⇒v=cosxsinx
\(\displaystyle \L I\;=\;\frac{\sin x}{\cos^2x} - \int \frac{\sin^2x}{\cos^3x}dx\)
\(\displaystyle \L I\;=\;\frac{\sin x}{\cos^2x} - \int \frac{1\,-\,\cos^2x}{\cos^3x}dx\)
\(\displaystyle \L I\;=\;\frac{\sin x}{\cos^2x} - \underbrace{\int \frac{1}{\cos^3x}dx} + \int \frac{1}{\cos x}dx\;\;\)
. . . Here!
. . . . . . . . . . . . . . . this is I !
So we have: \(\displaystyle \L\,I\;=\;\frac{\sin x}{\cos^2x}\,-\,I\,+\,\int\frac{1}{cos x}dx\)
Then: \(\displaystyle \L\,2I\;=\;\frac{sin x}{\cos^2x}\,+\,\int\frac{1}{\cos x}dx\;=\;\frac{\sin x}{\cos^2x}\,+\,\int \sec x\,dx\)
\(\displaystyle \L\;\;\;2I\;=\;\frac{sin x}{\cos^2x}\,+\,\ln|\sec x\,+\,\tan x| + C\)
\(\displaystyle \L\;\;\;I\;=\;\frac{1}{2}\left[\frac{\sin x}{\cos^2x}\,+\,\ln|\sec x\,+\,\tan x|\right]\,+\,C\)
Therefore: \(\displaystyle \L\,\int\frac{dx}{\cos^3x}\)
=21[secxtanx+ln∣secx+tanx∣]+C
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
By the way, you just integrated a Classic problem:
∫sec3xdx