lisasayzhi
New member
- Joined
- Jan 16, 2006
- Messages
- 27
please delete
So we have: \(\displaystyle \L\,I\;=\;\frac{\sin x}{\cos^2x}\,-\,I\,+\,\int\frac{1}{cos x}dx\)\(\displaystyle \text{1. Find }\L I\;=\;\int \frac{1}{\cos^3x}\,dx\)
\(\displaystyle u\,=\,\frac{1}{\cos x}\;\;\Rightarrow\;\;du\,=\,\frac{\sin x}{\cos^2x}\,dx\)
\(\displaystyle dv\,=\,\frac{1}{\cos^2x}\,dx\;\;\Rightarrow\;\;v\,=\,\frac{\sin x}{\cos x}\)
\(\displaystyle \L I\;=\;\frac{\sin x}{\cos^2x} - \int \frac{\sin^2x}{\cos^3x}dx\)
\(\displaystyle \L I\;=\;\frac{\sin x}{\cos^2x} - \int \frac{1\,-\,\cos^2x}{\cos^3x}dx\)
\(\displaystyle \L I\;=\;\frac{\sin x}{\cos^2x} - \underbrace{\int \frac{1}{\cos^3x}dx} + \int \frac{1}{\cos x}dx\;\;\) . . . Here!
. . . . . . . . . . . . . . . this is I !