Hello, shivers20!
\(\displaystyle \L1)\:\int(x^3\,+\,5x\,-\,7)\,dx \;=\;\frac{x^4}{4} + \frac{5x^2}{2}\,-\,7x\) + C
\(\displaystyle \L2)\;\int\left(x^{\frac{1}{2}}\,+\,4x^{-3}\right)\,dx\)
\(\displaystyle = \;\frac{x^{\frac{3}{2}}}{\frac{3}{2}} \,+\,\frac{4x^{^{-2}}}{-2}\,+\,C\;=\;\frac{2}{3}x^{\frac{3}{2}} \,-\,2x^{^{-2}}\,+\,C\)
\(\displaystyle \L3)\;\int\frac{r}{\sqrt{1\,+\,r^2}}\,dr\)
Let \(\displaystyle u\:=\:1\,+\,r^2\;\;\Rightarrow\;\;du\,=\,2r\,dr\;\;\Rightarrow\;\;dr\,=\,\frac{dt}{2r}\)
Substitute: \(\displaystyle \L\,\int\frac{r}{t^{\frac{1}{2}}}\,\frac{dt}{2r}\;=\;\frac{1}{2}\int t^{-\frac{1}{2}}\,dt\;=\;\frac{1}{2}\frac{t^{\frac{1}{2}}}{\frac{1}{2}}\,+\,C \;= \;t^{\frac{1}{2}}\,+\,C\)
Back-substitute:\(\displaystyle \,(1\,+\,r^2)^{\frac{1}{2}}\,+\,C\)
\(\displaystyle \L 4)\;\int(2\,-\,3x)^{\frac{3}{5}}dx\)
Let \(\displaystyle u\:=\:2\,-\,3x\;\;\Rightarrow\;\;du\,=\,-3\,dx\;\;\Rightarrow\;\;dx\,=\,-\frac{du}{3}\)
Substitute: \(\displaystyle \L\,\int u^{\frac{3}{5}}\left(-\frac{du}{3}\right) \;= \;-\frac{1}{3}\int u^{\frac{3}{5}}du \;= \;-\frac{1}{3}\frac{u^{\frac{8}{5}}}{\frac{8}{5}}\,+\,C \;=\;-\frac{5}{24}u^{\frac{8}{5}}\,+\,C\)
Back-substitute: \(\displaystyle \L\:-\frac{5}{24}(2\,-\,3x)^{\frac{8}{5}}\,+\,C\)
.