YehiaMedhat
Junior Member
- Joined
- Oct 9, 2022
- Messages
- 74
[math]\mathcal{F}\{ e^{-4t^2 -8t} \}[/math][imath]e^{-t^2} = \frac{2}{1+\omega^2}[/imath] and [imath]e^{-4t^2 -8t} = e^{-4(t^2+2t+1)} e^4 = e^4 e^{-4(t+1)^2}[/imath]
[imath]\therefore\ \text{Applying the time shift property: } e^4\sqrt{\pi}\ e^{i\omega} e^{\frac{\omega^2}{4}}[/imath]
[imath]\therefore\ \text{Applying the scaling property: }\mathcal{F}\{ e^4 e^{-(2(t+1))^2} \} = \frac{e^4\sqrt{\pi}}{2}\ e^{i\frac{\omega}{2}} e^{\frac{(\frac{\omega}{2})^2}{4}}[/imath]
Final answer:
[math]\frac{e^4\sqrt{\pi}}{2}\ e^{i\frac{\omega}{2}} e^{\frac{\omega^2}{16}}[/math]
Is it right or not, because the solution in the sheets provided by my TA doesn't apply the scaling property to the [imath]e^{i\omega}[/imath], so, the final answer in the sheet is: [imath]\frac{e^4\sqrt{\pi}}{2}\ e^{i\omega} e^{\frac{\omega^2}{16}}[/imath]
[imath]\therefore\ \text{Applying the time shift property: } e^4\sqrt{\pi}\ e^{i\omega} e^{\frac{\omega^2}{4}}[/imath]
[imath]\therefore\ \text{Applying the scaling property: }\mathcal{F}\{ e^4 e^{-(2(t+1))^2} \} = \frac{e^4\sqrt{\pi}}{2}\ e^{i\frac{\omega}{2}} e^{\frac{(\frac{\omega}{2})^2}{4}}[/imath]
Final answer:
[math]\frac{e^4\sqrt{\pi}}{2}\ e^{i\frac{\omega}{2}} e^{\frac{\omega^2}{16}}[/math]
Is it right or not, because the solution in the sheets provided by my TA doesn't apply the scaling property to the [imath]e^{i\omega}[/imath], so, the final answer in the sheet is: [imath]\frac{e^4\sqrt{\pi}}{2}\ e^{i\omega} e^{\frac{\omega^2}{16}}[/imath]